RESUMEN
BACKGROUND: Though several nomograms have been established to predict the survival probability of patients with small-cell lung cancer (SCLC), none involved enough variables. This study aimed to construct a novel prognostic nomogram and compare its performance with other models. METHODS: Seven hundred twenty-two patients were pathologically diagnosed with SCLC in Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University from January 2016 to December 2018. We input Forty-one factors by reviewing the medical records. The nomogram was constructed based on the variables identified by univariate and multivariate analyses in the training set and validated in the validation set. Then we compared the performance of the models in terms of discrimination, calibration, and clinical net benefit. RESULTS: There were eight variables involved in the nomogram: gender, monocyte (MON), neuron-specific enolase (NSE), cytokeratin 19 fragments (Cyfra211), M stage, radiotherapy (RT), chemotherapy cycles (CT cycles), and prophylactic cranial irradiation (PCI). The calibration curve showed a good correlation between the nomogram prediction and actual observation for overall survival (OS). The area under the curve (AUC) of the nomogram was higher, and the Integrated Brier score (IBS) was lower than other models, indicating a more accurate prediction. Decision curve analysis (DCA) showed a significant improvement in the clinical net benefit compared to the other models. CONCLUSIONS: We constructed a novel nomogram to predict OS for patients with SCLC using more comprehensive and objective variables. It performed better than existing models and would assist clinicians in individually estimating risk and making a therapeutic regimen.
Asunto(s)
Neoplasias Pulmonares , Nomogramas , Carcinoma Pulmonar de Células Pequeñas , Humanos , Masculino , Femenino , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/patología , Persona de Mediana Edad , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Anciano , Pronóstico , Adulto , Estudios Retrospectivos , Estadificación de Neoplasias , Fosfopiruvato Hidratasa/sangreRESUMEN
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
RESUMEN
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Asunto(s)
Citoesqueleto de Actina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Muerte Celular , Animales , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genéticaRESUMEN
Photothermal catalytic oxidation is a promising and sustainable method for the degradation of indoor formaldehyde (HCHO). However, the excessively high surface temperature of existing photothermal catalysts during catalysis hinders the effective adsorption and degradation of formaldehyde under static conditions. Catalyst loading and oxygen vacancies (OVs) modulation are commonly employed strategies to reduce the photothermal catalytic temperature and enhance the efficiency of photothermal catalytic oxidation. In this work, a p-n type CuO/TiO2 heterojunction is successfully loaded onto diatomite using a wet precipitation method. Under the irradiation of a 300W xenon lamp, the prepared composite material achieved a 100% removal rate of HCHO within 2 h, with a 98% conversion rate to CO2, surpassing the performance of both individual photocatalysts and thermocatalysts. Additionally, by adjusting conditions such as light irradiation and temperature, we have demonstrated that this material exhibits synergistic photothermal catalytic properties. Based on HRTEM, XPS, Raman, and EPR analyses, the introduction of diatomite as a catalyst support was shown to effectively increase the number of OVs. Experimental results, along with O2-TPD, photoelectrochemical characterization, and radical detection, demonstrate that the presence of OVs enhances the oxidative efficiency of both photocatalysis and thermocatalysis, as well as the UV-Vis-IR photothermal catalytic performance. The ternary composite material generates weak hydroxyl (â¢OH) and superoxide (â¢O2-) radical under high-temperature with dark conditions, indicating its catalytic oxidation activity under this condition. The increase in temperature and the expansion of the spectral range both enhance the generation of these radicals. In summary, this work demonstrates that the use of diatomite as a support increases the material's specific surface area and OVs content, thereby enhancing adsorption and photothermal catalysis. It elucidates the enhanced catalytic degradation mechanism of this mineral-based photothermal catalyst.
RESUMEN
The toxic effects of tire wear particles (TWPs) in the environment are a growing concern for a variety of aquatic organisms. However, studies about TWPs toxicity on aquatic organisms are limited. This study investigated the accumulation and depuration of TWPs in zebrafish at three different concentrations (5 mg/L, 10 mg/L, and 20 mg/L), as well as the toxic effects on the gill, liver, and gut. We found that TWPs could accumulate in the gill and gut for a long time, and the number of TWPs at the high-concentration (20 mg/L) was higher than at the low-concentration (5 mg/L). TWPs induced oxidative stress in the gill and liver. The liver transcriptome profiles indicated that the high concentration of TWPs tended to up-regulate metabolic processes, whereas the low concentration of TWPs was inclined to down-regulate cellular processes. The high-concentration treatment significantly increased xenobiotic biodegradation and metabolism, and lipid metabolism-related pathways, whereas the low-concentration treatment distinctly altered amino acid metabolism-related pathways. The expression of gstt1b, ugt1a1, mgst3b, miox, hsd17b3, and cyp8b1 gene was up-regulated in all TWPs treatments. In addition, Gemmobacter and Shinella enriched in the high-concentration treatment were closely correlated with the degradation of TWPs. These findings provided objective evidence for the toxicity evaluation of TWPs on zebrafish.
Asunto(s)
Branquias , Hígado , Contaminantes Químicos del Agua , Pez Cebra , Animales , Branquias/metabolismo , Branquias/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/efectos de los fármacosRESUMEN
High-quality primer design is essential for the success of all polymerase chain reaction (PCR)-based experiments. We previously developed a thermodynamics-based gene-specific quantitative PCR (qPCR) primer database for 147 organisms, which has been used extensively in gene expression studies. However, the number of organisms and the imperfection of function in the database limits its potential applications. Here, we improved the functionality of qPrimerDB to create a more comprehensive primer resource. Specifically, we (i) developed an improved primer design tool, qPrimer, building upon the previous qPrimerDB pipeline, to enhance the efficiency and simplicity of genome-scale qPCR primer design; (ii) pre-computed qPCR primer resources from 1 308 genomes of 1172 organisms and (iii) introduced a complete system for identifying, designing, checking, marking, and submitting qPCR primers. qPrimerDB 2.0 is freely available at https://qprimerdb.biodb.org. The qPrimer source code is available at https://github.com/swu1019lab/qPrimer.
RESUMEN
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Asunto(s)
Biomarcadores , Exosomas , Glomerulonefritis Membranosa , Exosomas/metabolismo , Glomerulonefritis Membranosa/diagnóstico , Humanos , Animales , PronósticoRESUMEN
OBJECTIVES: This study aims to evaluate the safety of a new inactivated poliomyelitis vaccine (Sabin strains) (sIPV) for large-scale use in primary and booster immunizations, whether simultaneously administered with other vaccines or not and to explore the persistence of all vaccines at approximately six months after vaccination. METHOD: A total of 3200 infants were recruited into this study, including 2000 infants aged 2-3 months randomly assigned (1:1) into the "sIPV basic" or the "sIPV+DTaP" group for primary immunization of sIPV. Another 1200 children aged 18 months old and above were randomly assigned (2:2:1:1) into the "sIPV booster," "sIPV+HepA-I," "sIPV+MMR", or "sIPV+HepA-L" group for booster immunization of sIPV. Adverse events within 30 days of each vaccination dose in all participants were self-reported by guardians using a WeChat mini-program. Approximately 200 blood samples were collected at 5-7 months after the final vaccination to test for antibodies against poliovirus and other viruses. RESULTS: 3198 participants in total were included in the safety study, including 1999 infants aged 2-3 months old and 1199 children aged 18-26 months old. For primary immunization, the incidence of adverse reactions in the "sIPV basic" and the "sIPV+DTaP" group were 3.19 and 6.21% (P = 0.001), respectively. For booster immunization, the incidences of adverse reaction for the "sIPV booster" group were 2.25%, while the incidence for the "sIPV +others" group in total was 2.50% (P = 0.788). Most adverse reactions were mild. Fever was the most common symptom in all groups. No vaccine-related serious adverse events (SAEs) were observed in this study. The seropositivity rates of antibodies in the "sIPV basic" and the "sIPV+DTaP" group were 92.31 and 100% against type 1 poliovirus (P = 0.031); 96.15% and 98.57% against type 2 poliovirus (P = 0.575); 98.08% and 91.43% against type 3 poliovirus (P = 0.237), respectively. Regarding booster vaccination with sIPV, whether co-administered with other vaccines or not, the seropositivity rates of antibodies against the three types of polioviruses were all 100%. Seropositivity rates of antibodies against hepatitis A, measles, mumps, and rubella were all no <77%, except for pertussis, which was <30%. CONCLUSION: sIPV demonstrated good safety and immune persistence for primary and booster vaccinations, whether administered singly or simultaneously. Antibodies against hepatitis A, measles, mumps and rubella were not disrupted by the co-vaccination. However, the seropositivity rates and geometric mean concentrations (GMCs) of antibodies against pertussis indicate the necessity for a booster dose.
Asunto(s)
Anticuerpos Antivirales , Inmunización Secundaria , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Humanos , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio de Virus Inactivados/efectos adversos , Lactante , Inmunización Secundaria/métodos , Masculino , China , Femenino , Anticuerpos Antivirales/sangre , Poliomielitis/prevención & control , Poliomielitis/inmunología , Poliovirus/inmunología , Esquemas de Inmunización , Vacunación/métodos , Vacunas Combinadas/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversosRESUMEN
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Asunto(s)
Oftalmopatías , Ferroptosis , Humanos , Oftalmopatías/metabolismo , Oftalmopatías/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido , Transducción de Señal , Muerte Celular , Hierro/metabolismoRESUMEN
Headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (E-nose) technologies were implemented to characterize the volatile profile of aerial part from 40 coriander varieties. A total of 207 volatile compounds were identified and quantified, including aldehydes, alcohols, terpenes, hydrocarbons, esters, ketones, acids, furans, phenols and others. E-nose results showed that W5S and W2W were representative sensors responding to coriander odor. Among all varieties, the number (21-30 species) and content (449.94-1050.55 µg/g) of aldehydes were the highest, and the most abundant analytes were (Z)-9-hexadecenal or (E)-2-tetratecenal, which accounted for approximately one-third of the total content. In addition, 37 components were determined the characteristic constituents with odor activity values (OAVs) ≥ 1, mainly presenting citrusy, fatty, soapy and floral smells. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) could effectively distinguish different varieties. This study provided a crucial theoretical basis for flavor evaluation and quality improvement of coriander germplasm resources.
Asunto(s)
Coriandrum , Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Coriandrum/química , Odorantes/análisis , QuimiometríaRESUMEN
BACKGROUND AND AIM: Mild hypothermia in hepatic ischemia-reperfusion injury is increasingly being studied. This study aimed to conduct a systematic evaluation of the effectiveness of mild hypothermia in improving hepatic ischemia-reperfusion injury. METHODS: We systematically searched CNKI, WanFang Data, PubMed, Embase, and Web of Science for original studies that used animal experiments to determine how mild hypothermia(32-34°C) pretreatment improves hepatic ischemia-reperfusion injury(in situ 70% liver IR model). The search period ranged from the inception of the databases to May 5, 2023. Two researchers independently filtered the literature, extracted the data, and assessed the risk of bias incorporated into the study. The meta-analysis was performed using RevMan 5.4.1 and Stata 15 software. RESULTS: Eight randomized controlled trials (RCTs) involving a total of 117 rats/mice were included. The results showed that the ALT levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [Standardized Mean Difference (SMD) = -5.94, 95% CI(-8.09, -3.78), P<0.001], and AST levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.45, 95% CI (-6.10, -2.78), P<0.001]. The hepatocyte apoptosis rate in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -6.86, 95% CI (-10.38, -3.33), P<0.001]. Hepatocyte pathology score in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -4.36, 95% CI (-5.78, -2.95), P<0.001]. There was no significant difference in MPO levels between the mild hypothermia preconditioning group and the normothermic control group [SMD = -4.83, 95% CI (-11.26, 1.60), P = 0.14]. SOD levels in the mild hypothermia preconditioning group were significantly higher than those in the normothermic control group [SMD = 3.21, 95% CI (1.27, 5.14), P = 0.001]. MDA levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.06, 95% CI (-7.06, -1.07) P = 0.008]. CONCLUSION: Mild hypothermia can attenuate hepatic ischemia-reperfusion injury, effectively reduce oxidative stress and inflammatory response, prevent hepatocyte apoptosis, and protect liver function.
Asunto(s)
Hipotermia Inducida , Hígado , Daño por Reperfusión , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Animales , Hipotermia Inducida/métodos , Hígado/patología , Ratones , Ratas , Modelos Animales de EnfermedadRESUMEN
Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.
Asunto(s)
Óxido Nítrico , Proteínas de Plantas , Tolerancia a la Sal , Plantones , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Plantones/metabolismo , Tolerancia a la Sal/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brasinoesteroides/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Transducción de SeñalRESUMEN
The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.
Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Semillas , Factores de Transcripción , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismoRESUMEN
Nowadays, improving the quality of postharvest fruits has become a hot research topic. Nitric oxide (NO) is often regarded as a signaling molecule that delays the postharvest senescence of fruits. Moreover, phytohormones affect the postharvest senescence of fruits. This review mainly describes how NO improves the postharvest quality of fruits by delaying postharvest fruit senescence, mitigating fruit cold damage and controlling postharvest diseases. Furthermore, the crosstalk of NO and multiple plant hormones effectively delays the postharvest senescence of fruits, and the major crosstalk mechanisms include (1) mediating phytohormone signaling. (2) inhibiting ETH production. (3) stimulating antioxidant enzyme activity. (4) decreasing membrane lipid peroxidation. (5) maintaining membrane integrity. (6) inhibiting respiration rate. (7) regulating gene expression related to fruit senescence. This review concluded the roles and mechanisms of NO in delaying postharvest fruit senescence. In addition, the crosstalk mechanisms between NO and various phytohormones on the regulation of postharvest fruit quality are also highlighted, which provides new ideas for the subsequent research.
Asunto(s)
Frutas , Óxido Nítrico , Reguladores del Crecimiento de las Plantas , Frutas/metabolismo , Frutas/química , Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Óxido Nítrico/metabolismoRESUMEN
SIRT2 play important roles in cell cycle and cellular metabolism in the development of non-small cell lung cancer (NSCLC), and SIRT2 exhibits its therapeutic effect on NSCLC tumors with high expression of SIRT2. Nevertheless, the clinical relevance of SIRT2 in lung adenocarcinoma (LUAD), particularly its impact on tumor growth and prognostic implications, remains obscure. This investigation entailed a comprehensive analysis of SIRT2 mRNA and protein expression levels in diverse tumor and corresponding healthy tissues, utilizing databases such as TIMER 2.0, UALCAN, and HPA. Prognostic correlations of SIRT2 expression in LUAD patients, stratified by distinct clinicopathological characteristics, were evaluated using the KM Plotter database. Additionally, the TCGA and TIMER 2.0 databases were employed to assess the relationship between SIRT2 and immune infiltration, as well as to calculate immunity, stromal, and estimation scores, thus elucidating the role of SIRT2 in modulating tumor immunotherapy responses. Furthermore, Gene Set Enrichment Analysis (GSEA) was utilized to elucidate SIRT2's biological functions in pan-cancer cells. Our findings revealed a marked reduction in both mRNA and protein levels of SIRT2 in LUAD tumors relative to healthy tissue. Survival analysis indicated that diminished SIRT2 expression correlates with adverse prognostic outcomes in LUAD. Furthermore, SIRT2 expression demonstrated a significant association with various clinicopathologic attributes of LUAD patients, influencing survival outcomes across different clinicopathologic states. Functional enrichment analyses highlighted SIRT2's involvement in cell cycle regulation and immune response. Notably, SIRT2 exhibited a positive correlation with immune cell infiltration, including natural killer (NK) cells, macrophages, and dendritic cells (DCs). In summary, SIRT2 was a potential prognostic biomarker for LUAD and and a new immunotherapy target.
RESUMEN
Climate change has significantly influenced the growth and distribution of plant species, particularly those with a narrow ecological niche. Understanding climate change impacts on the distribution and spatial pattern of endangered species can improve conservation strategies. The MaxEnt model is widely applied to predict species distribution and environmental tolerance based on occurrence data. This study investigated the suitable habitats of the endangered Ormosia microphylla in China and evaluated the importance of bioclimatic factors in shaping its distribution. Occurrence data and environmental variables were gleaned to construct the MaxEnt model, and the resulting suitable habitat maps were evaluated for accuracy. The results showed that the MaxEnt model had an excellent simulation quality (AUC = 0.962). The major environmental factors predicting the current distribution of O. microphylla were the mean diurnal range (bio2) and precipitation of the driest month (bio14). The current core potential distribution areas were concentrated in Guangxi, Fujian, Guizhou, Guangdong, and Hunan provinces in south China, demonstrating significant differences in their distribution areas. Our findings contribute to developing effective conservation and management measures for O. microphylla, addressing the critical need for reliable prediction of unfavorable impacts on the potential suitable habitats of the endangered species.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , China , Conservación de los Recursos Naturales/métodos , Cambio Climático , ÁrbolesRESUMEN
Endometrial cancer is a malignant tumor that commonly occurs in the female reproductive system and its incidence is still increasing. The mechanism of the development of endometrial cancer has not yet been fully clarified, so we need to continuously study the relevant mechanisms of endometrial cancer and continue to explore its biomarkers in order to discover more precise and effective treatment methods for endometrial cancer. RT-qPCR (Real-Time quantitative Polymerase Chain Reaction) experiments were used to detect the expression level of MMP23B (Matrix Metalloproteinase 23B) in endometrial cancer cells; the clinical data of the TCGA (The Cancer Genome Atlas) database were downloaded, and gene expression profiles were analyzed to investigate the correlation between MMP23B (Matrix Metalloproteinase 23B) and the survival prognosis of endometrial cancer, and functional enrichment analysis was performed on MMP23B (Matrix Metalloproteinase 23B) related genes. After silencing MMP23B (Matrix Metalloproteinase 23B), CCK8 (Cell Counting Kit-8), RT-qPCR (Real-Time quantitative Polymerase Chain Reaction), scratch assay, and transwell assay were used to detect cell viability, levels of apoptotic factors, migration rate, and invasion number of endometrial cancer, respectively. MMP23B (Matrix Metalloproteinase 23B) was highly expressed in endometrial cancer, which is closely related to a poor survival prognosis for endometrial cancer, and may act on endometrial cancer through apoptosis-related functions. The downregulation of MMP23B (Matrix Metalloproteinase 23B) reduced the cell viability of endometrial cancer cells, upregulated the expression levels of CASP3 (Caspase-3), CASP8 (Caspase-8) and CASP9 (Caspase-9) in cells, and inhibited cell migration and invasion.
RESUMEN
BACKGROUND: The aim of this study was to establish and validate a Susceptibility-weighted imaging (SWI)-based predictive model for neonatal intracranial haemorrhage (ICH). METHODS: A total of 1190 neonates suspected of ICH after cranial ultrasound screening in a tertiary hospital were retrospectively enrolled. The neonates were randomly divided into a training cohort and a internal validation cohort by a ratio of 7:3. Univariate analysis was used to analyze the correlation between risk factors and ICH, and the prediction model of neonatal ICH was established by multivariate logistic regression based on minimum Akaike information criterion (AIC). The nomogram was externally validated in another tertiary hospital of 91 neonates. The performance of the nomogram was evaluated in terms of discrimination by the area under the curve (AUC), calibration by the calibration curve and clinical net benefit by the decision curve analysis (DCA). RESULTS: Univariate analysis and min AIC-based multivariate logistic regression screened the following variables to establish a predictive model for neonatal ICH: Platelet count (PLT), gestational diabetes, mode of delivery, amniotic fluid contamination, 1-min Apgar score. The AUC was 0.715, 0.711, and 0.700 for the training cohort, internal validation cohort, and external validation cohort, respectively. The calibration curve showed a good correlation between the nomogram prediction and actual observation for ICH. DCA showed the nomogram was clinically useful. CONCLUSION: We developed and validated an easy-to-use nomogram to predict ICH for neonates. This model could support individualized risk assessment and healthcare.
Asunto(s)
Hemorragias Intracraneales , Nomogramas , Humanos , Recién Nacido , Femenino , Masculino , Estudios Retrospectivos , Hemorragias Intracraneales/diagnóstico por imagen , Hemorragias Intracraneales/etiología , Factores de Riesgo , Modelos LogísticosRESUMEN
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Giberelinas/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismoRESUMEN
BACKGROUND: Objective: To understand the barriers associated with self-management of oral health among rural older adults in Guangxi, and to explore the high incidence of oral problems. This information will assist in the formulation of relevant strategies to solve the oral health problems in this population. METHODS: Taking a phenomenological approach, the current status of, and barriers to, oral health self-management in rural older adults from different regions of Guangxi were explored. Participants were purposively selected and interviewed face-to-face. RESULTS: The interviews yielded four overarching themes and six corresponding sub-themes pertaining to barriers in oral health self-management. These included: (1) Older adults' understanding of oral health and disease, perceptions of oral health and their oral health behaviours; (2) Problems in accessing oral health information; (3) Role of family support; and (4) Barriers to healthcare that included access to dental services, oral treatment experience and financial burden of access to dental care. CONCLUSION: Rural older adults in Guangxi face oral health self-management barriers. Improving access to oral healthcare services and changing existing oral health perceptions and habits may assist them in overcoming self-management challenges.