Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.116
Filtrar
1.
Bioelectrochemistry ; 159: 108730, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38762950

RESUMEN

An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the Cu2O/CuO@CeO2 nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO2 shell would undergo redox reaction with Cu2O core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface. The "fresh" active sites continue to emerge constantly, resulting in a significant increase in the current signal. In light of the electrochemical characterization, the electron transfer pathway and catalytic cycle mechanism among CeO2, Cu2O and CuO were further discussed. The developed electrochemical immunosensor detected cTnI from 100 fg/mL to 100 ng/mL with a LOD of 15.85 fg/mL under optimal conditions. The analysis results indicate that the immunosensor would hold promise for broad application prospects in the biological detection for other biomarkers.

2.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772666

RESUMEN

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Mediciones Luminiscentes , Estructuras Metalorgánicas , Neonicotinoides , Neonicotinoides/análisis , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química , Mediciones Luminiscentes/métodos , Estructuras Metalorgánicas/química , Rutenio/química , Técnicas Biosensibles/métodos , Límite de Detección , Complejos de Coordinación/química , Insecticidas/análisis
3.
Anal Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716680

RESUMEN

In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2-Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1. In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.

4.
Biosens Bioelectron ; 259: 116387, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38754194

RESUMEN

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.

5.
Anal Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751335

RESUMEN

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.

6.
Dalton Trans ; 53(19): 8269-8274, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38659319

RESUMEN

The substantial expense associated with catalysts significantly hampers the progress of electrolytic water-based hydrogen production technology. There is an urgent need to find non-precious metal catalysts that are both cost-effective and highly efficient. Here, the porous Ni2P-FePx nanomaterials were successfully prepared by hydrothermal method, nickel foam as the base, iron nitrate solution as the caustic agent and iron source, and finally phosphating at low temperature. The obtained porous Ni2P-FePx nanosheets showed excellent catalytic activity under alkaline PH = 14, and an overpotential of merely 241 mV was required to achieve a current density of 50 mA cm-2. The morphology of the nanosheet can still be flawlessly presented on the screen after 50 h of working at high current density.

7.
Phytomedicine ; 128: 155390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569296

RESUMEN

BACKGROUND: Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE: This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS: We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS: SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION: This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Farmacología en Red , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
8.
Talanta ; 275: 126125, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663066

RESUMEN

The establishment of rapid target analysis methods for cytokeratin fragment antigen 21-1 (CYFRA 21-1) is urgently needed. [Ir(pbi)2(acac)] (pbi = 2-(4-bromophenyl)-1-hydrogen -benzimidazole, acac = acetylacetonate) as traditional electrochemiluminescence (ECL) luminophores has been confined due to its non-negligible dark toxicity and poor water solubility leading to poor biocompatibility and electrical conductivity as an organic molecule. Hence, to overcome this limitation, [Ir(pbi)2(acac)] can be effectively loaded on the polyvinyl alcohol hydrogel modified Ti3C2Tx MXene surface (Ir@Ti3C2Tx-PVA) as sensing platform which can emit high ECL signals. Then, a quenching strategy was proposed to fabricate an ECL sandwich immunosensor using H2O2 as quencher molecules which can generated by Pd@Au0.85Pd0.15. Especially, the generation of O2 to H2O2 can be achieved through a two-electron (2e-) reaction pathway by Pd@Au0.85Pd0.15, to overcome the restriction that the H2O2 was virtually impossible to label or immobilize on the non-enzyme nanomaterials. The proposed ECL assay achieves a response to CYFRA 21-1 within the range of 0.1 pg/mL-100 ng/mL, with a detection limit of 8.9 fg/mL (S/N = 3). This work provided a feasible tactic to seek superior-performance ECL luminophore and quencher consequently set up a novel means to makeup ultrasensitive ECL biosensor, which extended the utilization potential of Ir(pbi)2(acac) in ECL assays.

9.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649964

RESUMEN

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Asunto(s)
Neoplasias de la Mama , Mutación , Fenotipo , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Pueblo Asiatico/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Secuenciación del Exoma , Persona de Mediana Edad , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Perfilación de la Expresión Génica , Transcriptoma , Biomarcadores de Tumor/genética , Análisis por Conglomerados , Estudios de Cohortes , Adulto , Malasia/epidemiología , Anciano , Variaciones en el Número de Copia de ADN
10.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569310

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Hidrocarburos Policíclicos Aromáticos , Pirenos , Inmunoensayo , Hierro , Mediciones Luminiscentes , Técnicas Electroquímicas , Límite de Detección
11.
Anal Chem ; 96(17): 6659-6665, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635916

RESUMEN

The enhancement of sensitivity in biological analysis detection can reduce the probability of false positives of the biosensor. In this work, a novel self-on controlled-release electrochemiluminescence (CRE) biosensor was designed by multiple signal amplification and framework-enhanced stability strategies. As a result, the changes of the ECL signal were enhanced before and after the controlled-release process, achieving sensitive detection of prostate-specific antigen (PSA). Specifically, for one thing, Fe3O4@CeO2-NH2 with two paths for enhancing the generation of coreactant radicals was used as the coreaction accelerator to boost ECL performance. For another, due to the framework stability, zeolitic imidazolate framework-8-NH2 (ZIF-8-NH2) was combined with luminol to make the ECL signal more stable. Based on these strategies, the constructed CRE biosensor showed a strong self-on effect in the presence of PSA and high sensitivity in a series of tests. The detection range and limit of detection (LOD) were 5 fg/mL to 10 ng/mL and 2.8 fg/mL (S/N = 3), respectively, providing a feasible approach for clinical detection of PSA.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , Antígeno Prostático Específico , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/sangre , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Masculino , Cerio/química , Luminol/química
12.
Nanoscale ; 16(18): 8851-8857, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38644784

RESUMEN

The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. However, the lack of sufficient catalysts has hindered the development of the NO3-RR. This research develops a transformation of porous CoP@N-C/CC into porous phosphorus-rich CoP4@N-C/CC through high-temperature calcination. Due to its unique phosphating-rich structure, CoP4@N-C/CC exhibits an excellent Faraday efficiency (FE: 92.3%) and NH3 yield (610.2 µmol h-1 cm-2). Such a catalyst with more P-P bonds can provide more active sites, effectively enhancing the adsorption and reaction processes of reactant molecules. In addition, the catalyst has good durability and catalytic stability, which provides a possibility for the future application of electrocatalytic ammonia production.

13.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677023

RESUMEN

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Asunto(s)
Técnicas Biosensibles , Límite de Detección , Ácido Salicílico , Teléfono Inteligente , Técnicas Biosensibles/instrumentación , Ácido Salicílico/análisis , Ácido Salicílico/química , Diseño de Equipo , Humanos , Hidrogeles/química , Cosméticos/química , Cosméticos/análisis
14.
Anal Chem ; 96(18): 7265-7273, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649306

RESUMEN

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Asunto(s)
Cobre , Técnicas Electroquímicas , Mediciones Luminiscentes , Metaloproteinasa 14 de la Matriz , Nanopartículas del Metal , Cobre/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/análisis , Electrodos , Humanos
15.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609255

RESUMEN

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias , Humanos , Compuestos de Manganeso , Oro , Peróxido de Hidrógeno , Luminol , Reproducibilidad de los Resultados , Inmunoensayo , Óxidos , Paladio , Receptores de Hialuranos
16.
ACS Sens ; 9(4): 1992-1999, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38536770

RESUMEN

The construction of assays is capable of accurately detecting cytokeratin-19 (CYFRA 21-1), which is critical for the rapid diagnosis of nonsmall cell lung cancer. In this work, a novel electrochemiluminescence (ECL) immunosensor based on the co-reaction promotion of luminol@Au@Ni-Co nanocages (NCs) as ECL probe by Ti3C2Tx MXene@TiO2-MoS2 hybrids as co-reaction accelerator was proposed to detect CYFRA 21-1. Ni-Co NCs, as a derivative of Prussian blue analogs, can be loaded with large quantities of Au NPs, luminol, and CYFRA 21-1 secondary antibodies due to their high specific surface area. To further improve the sensitivity of the developed ECL immunosensor, Ti3C2Tx MXene@TiO2-MoS2 hybrids were prepared by in situ growth of TiO2 nanosheets on highly conductive Ti3C2Tx MXene, and MoS2 was homogeneously grown on Ti3C2Tx MXene@TiO2 surfaces by the hydrothermal method. Ti3C2Tx MXene@TiO2-MoS2 hybrids possess excellent catalytic performance on the electro-redox of H2O2 generating more O2·- and obtaining optimal ECL intensity of the luminol/H2O2 system. Under the appropriate experimental conditions, the quantitative detection range of CYFRA 21-1 was from 0.1 pg mL-1 to 100 ng mL-1, and the limit of detection (LOD) was 0.046 pg mL-1. The present sensor has a lower LOD with a wider linear range, which provides a new analytical assay for the early diagnosis of small-cell-type lung cancer labels.


Asunto(s)
Antígenos de Neoplasias , Técnicas Biosensibles , Disulfuros , Técnicas Electroquímicas , Oro , Queratina-19 , Mediciones Luminiscentes , Luminol , Molibdeno , Titanio , Queratina-19/sangre , Queratina-19/inmunología , Titanio/química , Luminol/química , Molibdeno/química , Oro/química , Antígenos de Neoplasias/inmunología , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Disulfuros/química , Límite de Detección , Níquel/química , Cobalto/química , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
17.
Talanta ; 273: 125871, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458083

RESUMEN

Lead ions (Pb2+) are heavy metal ions that are harmful to living organisms and ecosystems. It is important to realize sensitive detection of Pb2+ in the environment. In this study, a signal enhancement photoelectrochemical (PEC) sensor with high sensitivity was constructed for the detection of Pb2+. Firstly, to obtain excellent electron transfer performance, sulfur defect-engineered Bi2S3-x/In2S3-y mediated signal enhancement formed by Bi2S3 and In2S3 with well-matched structure in terms of energy level as the substrate materials. In this case, the introduction of sulfur vacancies further affects the electronic structure of the material, which significantly improves the electrical conductivity and effectively increases the electron transfer rate. In addition, the as-synthesized Cu@Cu2O nanosphere is chosen as the marker to accelerate the electron transfer through the surface plasmon resonance effect of Cu. The constructed sensor was able to detect Pb2+ in the range of 1 ng mL-1-100 µg mL-1 with a limit of detection of 19.2 pg mL-1. The sensor exhibits good reproducibility, specificity, and stability, indicating such PEC sensor can achieve the sensitive detection of Pb2+ in the environment. This work paves a new way for the construction of PEC sensors and the specific PEC detection of Pb2+ in environmental waters.

18.
Talanta ; 273: 125959, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537493

RESUMEN

The improvement of electrochemiluminescence (ECL) performance relies on the electron transfer efficiency between luminophore and coreactant. An ultrasensitive ECL micro-reactor with confinement-enhanced performance was prepared by using the covalent organic framework-LZU1-functionalized metal-organic framework (MOF@COF-LZU1) as a platform to assemble enormous N,N-dibutyl-2-hydroxyethylamine (DBAE) and tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) [Ru(dcbpy)32+] into its pore channels. Compared to individual substances of γ-CD-MOF and COF-LZU1, the synergistic effects can conduce to the enhancement of the intensity, durability and sensitivity of the micro-reactor. Besides, COF-LZU1 can provide a mild environment to accommodate a certain amount of DBAE by concentrating them from the aqueous solution into its hydrophobic cavities and boost the oxidation efficiency of DBAE to generate more DBAE●+ and profited the survival of DBAE●, leading to an improved reaction efficiency with the Ru(dcbpy)32+ intermediate. Thanks to the confinement-enhanced strategy, engineered as high-functioning luminescent materials, Ru@γ-CD-MOF@COF-LZU1 micro-reactors decorated with Au NPs can facilitate electron transfer and capture primary antibodies (Ab1). Moreover, Au-Pd-Pt noble metal aerogels (NMAs) functionalized MoS2 NFs (Au-Pd-Pt NMAs@MoS2 NFs) were chosen as base material due to its large specific surface areas, high porosity, and excellent electrical conductivity. Based on above merits, the sensor demonstrated a sensitive response to CYFRA 21-1 detection in a linear concentration gradient from 10 fg/mL to 50 ng/mL with a detection limit of 0.0055 pg/mL (S/N = 3). The COF-LZU1 decorated ECL micro-reactors were constructed based on the signal amplification strategies to realize accurate CYFRA 21-1 detection.

19.
Talanta ; 273: 125942, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513471

RESUMEN

In this work, a reusable DNA sensing microchip was developed for detection of vomitoxin (deoxynivalenol, DON) in sorghum using Cd-based core-shell CdSe@CdS quantum dots (QDs) as promising electrochemiluminescence (ECL) emitter. The size-adjustable aqueous phase CdSe@CdS QDs were prepared through homogeneous method, exhibiting strong cathodic ECL emission with a central wavelength of 520 nm in S2O82- coreactant. And gold nanoparticles-modified iron cobalt cyanide hydrate (Fe-Co-Au) was introduced as an accelerator to amplify the ECL signal. ECL signal was quenched after the formation of a double-stranded (dsDNA) S1-S2 by generating an electron transfer system between the emitter and ferrocene (Fc), which are modified on the aptamer (ssDNA S1) and its complement sequence (ssDNA S2), respectively. When the target DON is presence, the aptamer ssDNA S1 will bind to the DON and trigger the unbinding of double strands DNA and the release of the ssDNA S2, thus the signal can be generated. This approach offers a feasible method for the detection of DON within the range of 1 ng/mL to 200 ng/mL.


Asunto(s)
Técnicas Biosensibles , Cianatos , Nanopartículas del Metal , Puntos Cuánticos , Tricotecenos , Oro , Mediciones Luminiscentes/métodos , ADN , ADN de Cadena Simple , Oligonucleótidos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
20.
Medicine (Baltimore) ; 103(10): e37427, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457598

RESUMEN

The purpose of this study was to reduce the length of stay (LOS) for patients stranded in the emergency department (ED) of a Grade III A hospital in China, and to improve patient flow and increase bed capacity. We utilized a pre-/postintervention design and employed the Six Sigma methodology, which is based on the DMAIC cycle (define, measure, analyze, improve, and control), to evaluate and improve the existing process. Data from 18,631 patients who were stranded in the ED were collected and analyzed. The median LOS for stranded patients decreased from 17.21 (6.22, 27.36) hours to 13.45 (5.56, 25.85) hours (P < .05). Similarly, the median LOS for admitted patients decreased from 19.64 (7.77, 27.68) hours to 15.92 (6.19, 26.24) hours (P < .05). The median LOS for patients with an ED triage Level IV decreased from 16.15 (5.80, 26.62) hours to 12.59 (5.20, 24.97) hours (P < .05). In addition, the average hospitalization days of hospitalized patients decreased from 0.92 days to 0.82 days (P < .05). Furthermore, the bed utilization rate increased from 66.79% to 72.29% (P < .05). The number of bed turnovers in the ED resuscitation room increased from 20.30 to 21.96 (P < .05). We had effectively met our goal of minimizing ED patient LOS. Six Sigma method can effectively shorten patient LOS by measuring and analyzing the key factors affecting patient LOS, and by implementing measures such as strict implementation of emergency classification and triage system, establishment of multidisciplinary cooperative team, reasonable allocation of human resources, information management of bed resources, and improvement of performance appraisal scheme to improve and control the effectiveness of patient LOS.


Asunto(s)
Servicio de Urgencia en Hospital , Hospitalización , Humanos , Tiempo de Internación , Estudios Prospectivos , Hospitales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA