Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387144

RESUMEN

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Asunto(s)
Gutatión-S-Transferasa pi , Uranio , Adulto , Humanos , Gutatión-S-Transferasa pi/genética , Radiación Ionizante , Rayos gamma/efectos adversos , Apoptosis
2.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134636

RESUMEN

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos B
3.
Environ Res ; 229: 115947, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080277

RESUMEN

According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Bacterias , Radiación Ionizante
4.
Arch Pharm Res ; 45(8): 558-571, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35951164

RESUMEN

Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.


Asunto(s)
Sistema Hematopoyético , Protectores contra Radiación , Apoptosis , Médula Ósea , Daño del ADN , Humanos , Oxidación-Reducción , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico
5.
Metabolomics ; 18(6): 35, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35639180

RESUMEN

BACKGROUND: In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW: Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.


Asunto(s)
Contaminantes Ambientales , Metabolómica , Biomarcadores , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Humanos
6.
Environ Sci Pollut Res Int ; 28(13): 15584-15596, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33533004

RESUMEN

Ionizing radiation (IR) is a form of high energy. It poses a serious threat to organisms, but radiotherapy is a key therapeutic strategy for various cancers. It is significant to reduce radiation injury but maximize the effect of radiotherapy. MicroRNAs (miRNAs) are posttranscriptionally regulatory factors involved in cellular radioresponse. In this review, we show how miRNAs regulate important genes on cellular response to IR-induced damage and how miRNAs participate in IR-induced carcinogenesis. Additionally, we summarize the experimental and clinical evidence for miRNA involvement in radiotherapy and discuss their potential for improvement of radiotherapy. Finally, we highlight the role that miRNAs play in accident exposure to IR or radiotherapy as predictive biomarker. miRNA therapeutics have shown great perspective in radiobiology; miRNA may become a novel strategy for damage and protection against IR.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/radioterapia , Radiación Ionizante
7.
J Proteome Res ; 20(1): 995-1004, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151695

RESUMEN

Protection against low-dose ionizing radiation is of great significance. Uranium tailings are formed as a byproduct of uranium mining and a potential risk to organisms. In this study, we identified potential biomarkers associated with exposure to low-dose radiation from uranium tailings. We established a Wistar rat model of low dose rate irradiation by intratracheal instillation of a uranium tailing suspension. We observed pathological changes in the liver, lung, and kidney tissues of the rats. Using isobaric tags for relative and absolute quantification, we screened 17 common differentially expressed proteins in three dose groups. We chose alpha-1 antiproteinase (Serpina1), keratin 17 (Krt17), and aldehyde dehydrogenase (Aldh3a1) for further investigation. Our data showed that expression of Serpina1, Krt17, and Aldh3a1 had changed after the intratracheal instillation in rats, which may be potential biomarkers for uranium tailing low-dose irradiation. However, the underlying mechanisms require further investigation.


Asunto(s)
Uranio , Animales , Biomarcadores , Minería , Proteómica , Ratas , Ratas Wistar , Uranio/análisis
8.
Environ Sci Pollut Res Int ; 27(18): 22935-22945, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32329007

RESUMEN

High mercury (Hg) affects biochemical-physiological characteristics of plant leaves such as leaf chlorophyll, causing refractive discontinuity and modifications in leaf spectra. Furthermore, the hyperspectroscopy provides a potential tool for fast non-destructive estimation of leaf Hg. However, there are few studies that have investigated Hg for wetland plants via hyperspectral inversion. In this study, reeds (Phragmites australis) leaf Hg concentration and hyperspectra were measured under different soil Hg treatment. Hg-sensitive parameters were identified by basic spectral transformations and continuous wavelet transformation (CWT). Inversion models were developed using stepwise multiple linear regressions (SMLR), partial least square regression (PLSR), and random forest (RF) to estimate leaf Hg. The results indicated that CWT improved the correlation of hyperspectra and leaf Hg by 0.020-0.227, and R2 of the CWT-related model increased by 0.0557-0.2441. In addition, Hg-sensitive bands were predominant at 600-750 (visible region) and 1500-2300 nm (mid-infrared), and Hg might modify leaves spectra primarily by affecting chlorophyll and water contents. Of the studied models, SMLR using normalized transformation (NR) and CWT (NR-CWT-SMLR) model (R2 = 0.8594, RMSE = 0.0961) and RF using NR and CWT (NR-CWT-RF) model (R2 = 0.8560, RMSE = 0.1062) suited for leaf Hg inversion. For Hg content < 1.0 mg kg-1, the former model was more reliable and accurate. This study provided a method for the estimation of Hg contamination in wetland plant and indicated that model-based hyperspectral inversion was feasible for fast and non-destructive monitoring.


Asunto(s)
Mercurio , Suelo , Clorofila , Análisis de los Mínimos Cuadrados , Hojas de la Planta
9.
Huan Jing Ke Xue ; 39(1): 415-421, 2018 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-29965709

RESUMEN

At the Jiapigou gold mine of the Songhua River upstream, reed leaves (Phragmites australis), soil, and water samples were collected from June (summer) and September (autumn) 2016 for the determination of mercury. Moreover, the mercury concentrations in the air were determined synchronously. Furthermore, the level of mercury pollution in the reed leaves was determined by a single factor pollution index method, and the relationships among mercury concentrations in the reed leaves and environmental factors were analyzed to research the distribution characteristics, influencing factors, and correlations around the gold mining area. The results show that, in terms of spatial distribution, the mercury concentrations in reed leaves, soil, and water gradually decay with the distance from the gold mining area, and the spatial distribution of the mercury concentrations in the air was not obvious. Regarding a temporal distribution, the mercury concentrations in the reed leaves in summer were lower than those in autumn in the heavy pollution areas, while the distribution in the light pollution areas was the opposite, as the mercury concentrations of air and soil in summer were higher than those in autumn. The influence of environmental factors on the mercury concentrations in the reed leaves was soil > air > water. In addition, after stopping gold mining and processing using mercury, the mercury source in the area was the soil.


Asunto(s)
Mercurio/análisis , Minería , Poaceae/química , Contaminantes del Suelo/análisis , China , Monitoreo del Ambiente , Oro , Hojas de la Planta/química , Ríos , Estaciones del Año , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA