Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Hazard Mater ; 467: 133751, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341884

RESUMEN

Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.

2.
RSC Adv ; 14(9): 6262-6269, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375004

RESUMEN

The removal of lattice impurities is the key to the purification of high-purity quartz (HPQ), especially for the intracell lattice impurities. Generally, the intracell lattice impurities can be migrated to the quartz surface via roasting, then removed by acid leaching. In order to reveal the phase transition of quartz during the roasting process, the evolution of structure, bond length, volume, lattice parameter and lattice stress in original, Ti4+, Al3+/Li+ and 4H+ substituted SiO2 phases were employed to investigate the mechanisms of plastic deformation based on density functional theory calculations. Results showed that the evolution of bond lengths and volumes were mainly dominated by phase transition, and the interstitial volume in high temperature SiO2 phases was higher than that in low temperature, indicating that the phase transition from α-quartz to ß-cristobalite was beneficial to the migration of interstitial impurities. In addition, the phase transition from α-quartz to ß-cristobalite needs to overcome the energy barriers while the phase transition from α-cristobalite to ß-cristobalite needs to overcome the lattice stress. This study therefore provides an excellent theoretical basis for the plastic deformation mechanism, for the first time, beneficial to understanding the removal mechanisms of lattice impurities.

3.
Sci Total Environ ; 904: 166273, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586510

RESUMEN

Geologic carbon sequestration (GCS) is a promising strategy to reduce the harm of CO2 due to the rapidly increased fossil fuel combustion. Dolomitization and dissolution processes of deeply buried carbonate reservoirs significantly impact the potential of GCS. However, previous investigations mainly focus on the macroscopic batch experiments, the mechanisms at atomic level are still unclear especially for crystal boundary, but urgently required. Herein, the GCS potential and the effects of boundary dissolution on calcite and dolomite were investigated based on both analytical and simulation methods such as molecular dynamics simulation (MDS) and density functional theory (DFT) calculations, to deeply unveil the mechanisms of dolomitization and formation of intergranular secondary pores from the atomic perspective. The morphology results indicated that the dissolution of calcite and dolomite in carbonic acid solution started via the edges and corners. In addition, the simulated results showed that the carbon sequestration potential presented an order in dolomite (PMg50%) > PMg40% > PMg30% > PMg20% > PMg10% > calcite by dolomitization due to the reduced bulk volume but increased lattice stress. Furthermore, both electrons transfer and diffusion coefficients results suggested that the (104)/(110) boundary was preferentially dissolved as compared to the (104) and (110) planes, indicating that crystal boundary was beneficial to the formation of pores for the oil and gas storage, but harmful to the stability of long-term GCS. Therefore, this study, for the first time, provides new insights into uncovering the mechanisms of the GCS process in depth, from an atomic level focusing on the crystal boundary, thereby promoting the understand of the long-term evolution for both calcite and dolomite in deep reservoirs.

4.
J Colloid Interface Sci ; 650(Pt B): 1003-1012, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459724

RESUMEN

Geologic carbon sequestration (GCS) via injecting CO2 into deep carbonate reservoirs (mainly calcite and dolomite) is a promising strategy to reduce CO2 level. However, the dissolution or precipitation of calcite/dolomite planes on minerals/solution interface during long-term GCS process develops intergranular porosity and thus affects the permeability and stability of reservoirs. To investigate this process, both calcite and dolomite were dissolved in acetic and carbonic acids. A diffusion-controlled process was identified, with greater diffusion rates in acetic acid than that in carbonic acid. Quantified planes activity of both minerals follows (110) > (116) > (101) > (113) > (018) > (104) through density functional theory. Accomplished with preferential dissolution of calcite (110) planes in carbonic acid, calcite crystals precipitated with (104) planes at 423.15 K, under which, more calcite crystals were observed on dolomite surface, producing Ca-deplete surface. Molecular dynamic calculations showed higher dissolution rates of calcite/dolomite (110) planes than (104). In addition, the dissolution coefficients of Ca2+ were approximately triple of that Mg2+. Therefore, this study reveals the interface dissolution mechanisms of calcite and dolomite, especially on (110) and (104) planes at an atomic level, for the first time, providing better understanding for the stability of long-term GCS process.

5.
J Colloid Interface Sci ; 643: 393-402, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37084619

RESUMEN

Solar-energy-driven CO2 reduction for chemical reagents production, such as CH3OH, CH4 and CO, has tremendous potential for carbon neutrality in the energy industries. However, the low reduction efficiency limits its applicability. Herein, W18O49/MnWO4 (WMn) heterojunctions were prepared via one-step in-situ solvothermal process. Through this method, W18O49 tightly combined with the surface of MnWO4 nanofibers to form nanoflower heterojunction. It was found that under full spectrum light irradiation for 4 h, the yields of photoreduction of CO2 to CO, CH4 and CH3OH by 3-1 WMn heterojunction were 61.74, 71.30 and 18.98 µmol/g, respectively, which were 2.4, 1.8 and 1.1 times that of pristine W18O49, and ca.20 times that of pristine MnWO4 towards CO production. Furthermore, even in the air atmosphere, the WMn heterojunction still performed excellent photocatalytic performance. Systematic investigations demonstrated that the catalytic performance of WMn heterojunction was improved by superior light utilization and more efficient photo-generated carrier separation and migration as compared with W18O49 and MnWO4. Meanwhile, the intermediate products of the photocatalytic CO2 reduction process were also studied in detail by in-situ FTIR. Therefore, this study provides a new way for designing high efficiency of heterojunction for CO2 reduction.

6.
Chemosphere ; 328: 138563, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37028724

RESUMEN

Mn2O3 as a typical Mn based semiconductor has attracted growing attention due to its peculiar 3d electron structure and stability, and the multi-valence Mn on the surface is the key to peroxydisulfate activation. Herein, an octahedral structure of Mn2O3 with (111) exposed facet was synthesized by a hydrothermal method, which was further sulfureted to obtained a variable-valent Mn oxide for the high activation efficiency of peroxydisulfate under the light emitting diode irradiation. The degradation experiments showed that under the irradiation of 420 nm light, S modified manganese oxide showed an excellent removal for tetracycline within 90 min, which is about 40.4% higher than that of pure Mn2O3. In addition, the degradation rate constant k of S modified sample increased 2.17 times. Surface sulfidation not only increased the active sites and oxygen vacancies on the pristine Mn2O3 surface, but also changed the electronic structure of Mn due to the introduce of surface S2-. This modification accelerated the electronic transmission during the degradation process. Meanwhile, the utilization efficiency of photogenerated electrons was greatly improved under light. Besides, the S modified manganese oxide had an excellent reuse performance after four cycles. The scavenging experiments and EPR analyses showed that •OH and 1O2 were the main reactive oxygen species. This study therefore provides a new avenue for further developing manganese-based catalysts towards high activation efficiency for peroxydisulfate.


Asunto(s)
Compuestos de Manganeso , Óxidos , Manganeso/química , Tetraciclina , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA