Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Stem Cell Res Ther ; 11(1): 256, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586403

RESUMEN

BACKGROUND: MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS: MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS: MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS: 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Oxiquinolina , Distribución Tisular
2.
Aesthet Surg J ; 40(7): 784-799, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31406975

RESUMEN

There is growing interest in the regenerative potential of adipose-derived stem cells (ADSCs) for wound healing applications. ADSCs have been shown to promote revascularization, activate local stem cell niches, reduce oxidative stress, and modulate immune responses. Combined with the fact that they can be harvested in large numbers with minimal donor site morbidity, ADSC products represent promising regenerative cell therapies. This article provides a detailed description of the defining characteristics and therapeutic potential of ADSCs, with a focus on understanding how ADSCs promote tissue regeneration and repair. It summarizes the current regulatory environment governing the use of ADSC products across Europe and the United States and examines how various adipose-derived products conform to the current UK legislative framework. Advice is given to clinicians and researchers on how novel ADSC therapeutics may be developed in accordance with regulatory guidelines.


Asunto(s)
Tejido Adiposo , Células Madre , Adipocitos , Humanos , Cicatrización de Heridas
3.
Regen Med ; 12(4): 397-417, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28621179

RESUMEN

AIM: To present an integrated techno-economic analysis assessing the feasibility of affinity purification technologies using the manufacture of induced pluripotent stem cell-derived progenitor photoreceptors for retinal dystrophies as a case study. MATERIALS & METHODS: Sort purity, progenitor yield and viable cell recovery were investigated for three cell sorting techniques: fluorescent-activated cell sorting (FACS); magnetic-activated cell sorting (MACS); and a novel technology SpheriTech beads. Experimentally derived metrics were incorporated into an advanced bioprocess economics tool to determine cost of goods per dose for each technology. RESULTS & CONCLUSION: Technical and bioprocess benefits were noted with SpheriTech beads which, unlike FACS and MACS, require no cell labeling. This simplifies the bioprocess, reduces cell loss and leaves target cells label free. The economic tool predicted cost drivers and a critical dose (7 × 107 cells per dose) shifting the most cost-effective technology from FACS to MACS. Process optimization is required for SpheriTech to compete economically.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/economía , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cromatografía de Afinidad/economía , Cromatografía de Afinidad/métodos , Anticuerpos/metabolismo , Estudios de Factibilidad , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Magnetismo , Microesferas , Células Fotorreceptoras de Vertebrados/metabolismo , Estándares de Referencia
4.
Nano Lett ; 13(9): 4393-8, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23876030

RESUMEN

Silicon has been driving the great success of semiconductor industry, and emerging forms of silicon have generated new opportunities in electronics, biotechnology, and energy applications. Here we demonstrate large-area free-standing ultrathin single-crystalline Si at the wafer scale as new Si materials with processability. We fabricated them by KOH etching of the Si wafer and show their uniform thickness from 10 to sub-2 µm. These ultrathin Si exhibits excellent mechanical flexibility and bendability more than those with 20-30 µm thickness in previous study. Unexpectedly, these ultrathin Si materials can be cut with scissors like a piece of paper, and they are robust during various regular fabrication processings including tweezer handling, spin coating, patterning, doping, wet and dry etching, annealing, and metal deposition. We demonstrate the fabrication of planar and double-sided nanocone solar cells and highlight that the processability on both sides of surface together with the interesting property of these free-standing ultrathin Si materials opens up exciting opportunities to generate novel functional devices different from the existing approaches.


Asunto(s)
Nanoestructuras/química , Nanotecnología , Silicio/química , Cristalización , Suministros de Energía Eléctrica , Luz , Semiconductores , Energía Solar , Propiedades de Superficie
5.
J Am Chem Soc ; 132(19): 6642-3, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20423082

RESUMEN

Solution-based deposition techniques are widely considered to be a route to low-cost, high-throughput photovoltaic device fabrication. In this report, we establish a methodology for a highly scalable deposition process and report the synthesis of an air-stable, vulcanized ink from commercially available precursors. Using our air-stable ink rolling (AIR) process, we can make solar cells with an absorber layer that is flat, contaminant-free, and composed of large-grained CuInS(2). The current-voltage characteristics of the devices were measured in the dark and under 100 mW/cm(2) illumination intensity, and the devices were found to have J(sc) = 18.49 mA/cm(2), V(oc) = 320 mV, FF = 0.37, and eta = 2.15%. This process has the ability to produce flat, contaminant-free, large-grained films similar to those produced by vacuum deposition, and its versatility should make it capable of producing a variety of materials for electronic, optoelectronic, and memory devices.

6.
J Am Chem Soc ; 131(13): 4962-6, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19281233

RESUMEN

We synthesized wurtzite CuInS(2) nanorods (NRs) by colloidal solution-phase growth. We discovered that the growth process starts with nucleation of Cu(2)S nanodisks, followed by epitaxial overgrowth of CuInS(2) NRs onto only one face of Cu(2)S nanodisks, resulting in biphasic Cu(2)S-CISu heterostructured NRs. The phase transformation of biphasic Cu(2)S-CuInS(2) into monophasic CuInS(2) NRs occurred with growth progression. The observed epitaxial overgrowth and phase transformation is facile for three reasons. First, the sharing of the sulfur sublattice by the hexagonal chalcocite Cu(2)S and wurtzite CuInS(2) minimizes the lattice distortion. Second, Cu(2)S is in a superionic conducting state at the growth temperature of 250 degrees C wherein the copper ions move fluidly. Third, the size of the Cu(2)S nanodisks is small, resulting in fast phase transformation. Our results provide valuable insight into the controlled solution growth of ternary chalcogenide nanoparticles and will aid in the development of solar cells using ternary I-III-VI(2) semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA