Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; : 101414, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349250

RESUMEN

BACKGROUND: Alcohol-associated liver disease (ALD) is a major cause of alcohol related mortality. Sex is an important variable, however, the mechanism behind sex differences is not yet established. METHODS: Kdm5b flox/flox Kdm5c flox male mice were subjected to gonadectomy or sham surgery. Mice were fed a Western diet and 20% alcohol in the drinking water for 18 weeks. To induce knockout, mice received 2x1011 genome copies of AAV8-CMV-Cre or AAV8-control. To test the role of Notch, mice were treated with 10mg/kg of Avagacestat for 4 weeks. RESULTS: We found that Kdm5b/Kdm5c knockout promoted alcohol induced liver disease, while gonadectomy abolished this effect, suggesting that male sex hormones promote liver disease in the absence of KDM5 demethylases. In contrast, in the thioacetamide-induced fibrosis model, male sex hormones showed a protective effect regardless of genotype. In human liver disease samples, we found that androgen receptor expression positively correlated with fibrosis levels when KDM5B levels were low and negatively when KDM5B was high, suggesting that a KDM5B-dependent epigenetic state defines the AR role in liver fibrosis. Using isolated cells, we found that this difference was due to the differential effect of testosterone on hepatic stellate cell activation in the absence or presence of KDM5B/KDM5C. Moreover, this effect was mediated by KDM5-dependent suppression of Notch signaling. In KDM5-deficient mice, Notch3 and Jag1 gene expression was induced, facilitating testosterone-mediated induction of Notch signaling and stellate cell activation. Inhibiting Notch with Avagacestat greatly reduced liver fibrosis and abolished the effect of Kdm5b/Kdm5c loss. CONCLUSIONS: Male sex hormone signaling can promote or prevent alcohol-associated liver fibrosis depending on the KDM5-dependent epigenetic state.

2.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062471

RESUMEN

Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24- cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs' production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Células Madre Neoplásicas , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Células MCF-7 , Línea Celular Tumoral , Estrés Mecánico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Regulación Neoplásica de la Expresión Génica , Fenotipo , Antígeno CD24/metabolismo , Antígeno CD24/genética
3.
Hepatology ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687563

RESUMEN

BACKGROUND AND AIMS: Liver macrophages are heterogeneous and play an important role in alcohol-associated liver disease (ALD) but there is limited understanding of the functions of specific macrophage subsets in the disease. We used a Western diet alcohol (WDA) mouse model of ALD to examine the hepatic myeloid cell compartment by single cell RNAseq and targeted KC ablation to understand the diversity and function of liver macrophages in ALD. APPROACH AND RESULTS: In the WDA liver, KCs and infiltrating monocytes/macrophages each represented about 50% of the myeloid pool. Five major KC clusters all expressed genes associated with receptor-mediated endocytosis and lipid metabolism, but most were predicted to be noninflammatory and antifibrotic with 1 minor KC cluster having a proinflammatory and extracellular matrix degradation gene signature. Infiltrating monocyte/macrophage clusters, in contrast, were predicted to be proinflammatory and profibrotic. In vivo, diphtheria toxin-based selective KC ablation during alcohol exposure resulted in a liver failure phenotype with increases in PT/INR and bilirubin, loss of differentiated hepatocyte gene expression, and an increase in expression of hepatocyte progenitor markers such as EpCAM, CK7, and Igf2bp3. Gene set enrichment analysis of whole-liver RNAseq from the KC-ablated WDA mice showed a similar pattern as seen in human alcoholic hepatitis. CONCLUSIONS: In this ALD model, KCs are anti-inflammatory and are critical for the maintenance of hepatocyte differentiation. Infiltrating monocytes/macrophages are largely proinflammatory and contribute more to liver fibrosis. Future targeting of specific macrophage subsets may provide new approaches to the treatment of liver failure and fibrosis in ALD.

4.
Alcohol ; 118: 9-16, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38582261

RESUMEN

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.


Asunto(s)
Etanol , Humanos , Alcoholismo/inmunología , Etanol/farmacología , Etanol/efectos adversos , Infecciones/inmunología
5.
JHEP Rep ; 6(4): 101019, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38455470

RESUMEN

Background & Aims: Recent studies have implicated platelets, particularly α-granules, in the development of non-alcoholic steatohepatitis (NASH). However, the specific mechanisms involved have yet to be determined. Notably, thrombospondin 1 (TSP1) is a major component of the platelet α-granules released during platelet activation. Hence, we aimed to determine the role of platelet-derived TSP1 in NASH. Methods: Platelet-specific Tsp1 knockout mice (TSP1Δpf4) and their wild-type littermates (TSP1F/F) were used. NASH was induced by feeding the mice with a diet enriched in fat, sucrose, fructose, and cholesterol (AMLN diet). A human liver NASH organoid model was also employed. Results: Although TSP1 deletion in platelets did not affect diet-induced steatosis, TSP1Δpf4 mice exhibited attenuated NASH and liver fibrosis, accompanied by improvements in plasma glucose and lipid homeostasis. Furthermore, TSP1Δpf4 mice showed reduced intrahepatic platelet accumulation, activation, and chemokine production, correlating with decreased immune cell infiltration into the liver. Consequently, this diminished proinflammatory signaling in the liver, thereby mitigating the progression of NAFLD. Moreover, in vitro data revealed that co-culturing TSP1-deficient platelets in a human liver NASH organoid model attenuated hepatic stellate cell activation and NASH progression. Additionally, TSP1-deficient platelets play a role in regulating brown fat endocrine function, specifically affecting Nrg4 (neuregulin 4) production. Crosstalk between brown fat and the liver may also influence the progression of NAFLD. Conclusions: These data suggest that platelet α-granule-derived TSP1 is a significant contributor to diet-induced NASH and fibrosis, potentially serving as a new therapeutic target for this severe liver disease. Impact and implications: Recent studies have implicated platelets, specifically α-granules, in the development of non-alcoholic steatohepatitis, yet the precise mechanisms remain unknown. In this study, through the utilization of a tissue-specific knockout mouse model and human 3D liver organoid, we demonstrated that platelet α-granule-derived TSP1 significantly contributes to diet-induced non-alcoholic steatohepatitis and fibrosis. This contribution is, in part, attributed to the regulation of intrahepatic immune cell infiltration and potential crosstalk between fat and the liver. These findings suggest that platelet-derived TSP1 may represent a novel therapeutic target in non-alcoholic fatty liver disease.

6.
Hepatology ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943941

RESUMEN

BACKGROUND AND AIMS: Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS: We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS: In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.

7.
Clin Transl Sci ; 16(12): 2719-2728, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37877453

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), newly renamed metabolic dysfunction-associated liver disease (MASLD), is a leading cause of liver disease in children and adults. There is a paucity of data surrounding potential biomarkers and therapeutic targets, especially in pediatric NAFLD. Leukocyte cell-derived chemotaxin 2 (LECT2) is a chemokine associated with both liver disease and skeletal muscle insulin resistance. Our aim was to determine associations between LECT2 and common clinical findings of NAFLD in pediatric patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum LECT2 concentrations in children (aged 2-17 years) with and without NAFLD. LECT2 concentrations were then correlated to clinical parameters in NAFLD. Mean LECT2 was significantly elevated in children with NAFLD versus healthy controls (n = 63 vs. 42, 5.83 ± 1.98 vs. 4.02 ± 2.02 ng/mL, p < 0.005). Additionally, LECT2 had strong correlations with body mass index (BMI) (Pearson r = 0.301, p = 0.002). A LECT2 concentration of 3.76 mg/mL predicts NAFLD with a sensitivity of 90.5% and specificity of 54.8%. Principal component analysis and logistic regression models further confirmed associations between LECT2 and NAFLD status. This study demonstrates increased serum LECT2 concentrations in pediatric NAFLD, which correlates with BMI and shows strong predictive value within these patients. Our data indicate that LECT2 is a potential diagnostic biomarker of disease and should be further investigated in pediatric as well as adult NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Niño , Humanos , Biomarcadores , Factores Quimiotácticos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
8.
Pharmaceutics ; 15(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37242792

RESUMEN

Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20-100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.

9.
J Cell Sci ; 136(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37051862

RESUMEN

Macrophage-derived extracellular vesicles (EVs) play key roles in intercellular communication. Within the liver, they have been linked to several inflammatory diseases including nonalcoholic fatty liver disease (NAFLD). In this study, we found that inflammatory macrophages cause injury to hepatocytes, in part by a cell-cell crosstalk phenomenon involving the secretion of EVs containing pro-inflammatory cargo. Incorporation of these inflammatory signals into EV requires the cleavage of the trafficking adaptor protein RILP, which, as previously shown, results from inflammasome-mediated caspase-1 activation. RILP cleavage can be blocked by overexpressing a dominant negative, non-cleavable form of RILP (ncRILP). EV preparations from ncRILP-expressing cells are, by themselves, sufficient to suppress inflammatory effects in hepatocytes. These results suggest that both direct RILP manipulation and/or supplying ncRILP-modified EVs could be used as a novel therapy for the treatment of inflammatory liver diseases.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo
10.
J Virol ; 97(3): e0195022, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36877036

RESUMEN

This study aimed to better characterize the repertoire of serum hepatitis B virus (HBV) RNAs during chronic HBV infection in humans, which remains understudied. Using reverse transcription-PCR (RT-PCR), real-time quantitative PCR (RT-qPCR), RNA-sequencing, and immunoprecipitation, we found that (i) >50% of serum samples bore different amounts of HBV replication-derived RNAs (rd-RNAs); (ii) a few samples contained RNAs transcribed from integrated HBV DNA, including 5'-HBV-human-3' RNAs (integrant-derived RNAs [id-RNAs]) and 5'-human-HBV-3' transcripts, as a minority of serum HBV RNAs; (iii) spliced HBV RNAs were abundant in <50% of analyzed samples; (iv) most serum rd-RNAs were polyadenylated via conventional HBV polyadenylation signal; (v) pregenomic RNA (pgRNA) was the major component of the pool of serum RNAs; (vi) the area of HBV positions 1531 to 1739 had very high RNA read coverage and thus should be used as a target for detecting serum HBV RNAs; (vii) the vast majority of rd-RNAs and pgRNA were associated with HBV virions but not with unenveloped capsids, exosomes, classic microvesicles, or apoptotic vesicles and bodies; (viii) considerable rd-RNAs presence in the circulating immune complexes was found in a few samples; and (ix) serum relaxed circular DNA (rcDNA) and rd-RNAs should be quantified simultaneously to evaluate HBV replication status and efficacy of anti-HBV therapy with nucleos(t)ide analogs. In summary, sera contain various HBV RNA types of different origin, which are likely secreted via different mechanisms. In addition, since we previously showed that id-RNAs were abundant or predominant HBV RNAs in many of liver and hepatocellular carcinoma tissues as compared to rd-RNAs, there is likely a mechanism favoring the egress of replication-derived RNAs. IMPORTANCE The presence of integrant-derived RNAs (id-RNAs) and 5'-human-HBV-3' transcripts derived from integrated hepatitis B virus (HBV) DNA in sera was demonstrated for the first time. Thus, sera of individuals chronically infected with HBV contained both replication-derived and integrant-transcribed HBV RNAs. The majority of serum HBV RNAs were the transcripts produced by HBV genome replication, which were associated with HBV virions and not with other types of extracellular vesicles. These and other above-mentioned findings advanced our understanding of the HBV life cycle. In addition, the study suggested a promising target area on the HBV genome to increase sensitivity of the detection of serum HBV RNAs and supported the idea that simultaneous detection of replication-derived RNAs (rd-RNAs) and relaxed circular DNA (rcDNA) in serum provides more adequate evaluation of (i) the HBV genome replication status and (ii) the durability and efficiency of the therapy with anti-HBV nucleos(t)ide analogs, which could be useful for improvement of the diagnostics and treatment of HBV-infected individuals.


Asunto(s)
Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/genética , ARN , ADN Viral/genética , Replicación Viral/genética , ADN Circular/genética , ARN Viral/genética
11.
Hepatology ; 78(3): 803-819, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943063

RESUMEN

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is an acute liver and multisystem failure in patients with previously stable cirrhosis. A common cause of ACLF is sepsis secondary to bacterial infection. Sepsis-associated ACLF involves a loss of differentiated liver function in the absence of direct liver injury, and its mechanism is unknown. We aimed to study the mechanism of sepsis-associated ACLF using a novel mouse model. APPROACH AND RESULTS: Sepsis-associated ACLF was induced by cecal ligation and puncture procedure (CLP) in mice treated with thioacetamide (TAA). The combination of TAA and CLP resulted in a significant decrease in liver synthetic function and high mortality. These changes were associated with reduced metabolic gene expression and increased CCAAT enhancer binding protein beta (C/EBPß) transcriptional activity. We found that C/EBPß binding to its target gene promoters was increased. In humans, C/EBPß chromatin binding was similarly increased in the ACLF group compared with control cirrhosis. Hepatocyte-specific Cebpb knockout mice had reduced mortality and increased gene expression of hepatocyte differentiation markers in TAA/CLP mice, suggesting that C/EBPß promotes liver failure in these mice. C/EBPß activation was associated with endothelial dysfunction, characterized by reduced Angiopoietin-1/Angiopoietin-2 ratio and increased endothelial production of HGF. Angiopoietin-1 supplementation or Hgf knockdown reduced hepatocyte C/EBPß accumulation, restored liver function, and reduced mortality, suggesting that endothelial dysfunction induced by sepsis drives ACLF through HGF-C/EBPß pathway. CONCLUSIONS: The transcription factor C/EBPß is activated in both mouse and human ACLF and is a potential therapeutic target to prevent liver failure in patients with sepsis and cirrhosis.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Sepsis , Humanos , Ratones , Animales , Angiopoyetina 1 , Angiopoyetina 2 , Sepsis/complicaciones , Cirrosis Hepática/complicaciones , Factor de Crecimiento de Hepatocito
12.
Biology (Basel) ; 12(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36829532

RESUMEN

Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.

13.
Cell Mol Gastroenterol Hepatol ; 15(1): 39-59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36191854

RESUMEN

BACKGROUND & AIMS: Alcohol-associated liver disease (ALD) comprises a spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. We aimed to study the role of protein arginine methyltransferase 6 (PRMT6), a new regulator of liver function, in ALD progression. METHODS: Prmt6-deficient mice and wild-type littermates were fed Western diet with alcohol in the drinking water for 16 weeks. Mice fed standard chow diet or Western diet alone were used as a control. RESULTS: We found that PRMT6 expression in the liver is down-regulated in 2 models of ALD and negatively correlates with disease severity in mice and human liver specimens. Prmt6-deficient mice spontaneously developed liver fibrosis after 1 year and more advanced fibrosis after high-fat diet feeding or thioacetamide treatment. In the presence of alcohol Prmt6 deficiency resulted in a dramatic increase in fibrosis development but did not affect lipid accumulation or liver injury. In the liver PRMT6 is primarily expressed in macrophages and endothelial cells. Transient replacement of knockout macrophages with wild-type macrophages in Prmt6 knockout mice reduced profibrotic signaling and prevented fibrosis progression. We found that PRMT6 decreases profibrotic signaling in liver macrophages via methylation of integrin α-4 at R464 residue. Integrin α-4 is predominantly expressed in infiltrating monocyte derived macrophages. Blocking monocyte infiltration into the liver with CCR2 inhibitor reduced fibrosis development in knockout mice and abolished differences between genotypes. CONCLUSIONS: Taken together, our data suggest that alcohol-mediated loss of Prmt6 contributes to alcohol-associated fibrosis development through reduced integrin methylation and increased profibrotic signaling in macrophages.


Asunto(s)
Hígado Graso , Integrinas , Hepatopatías Alcohólicas , Proteína-Arginina N-Metiltransferasas , Animales , Humanos , Ratones , Arginina/metabolismo , Células Endoteliales , Hígado Graso/metabolismo , Integrinas/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/prevención & control , Cirrosis Hepática/complicaciones , Hepatopatías Alcohólicas/prevención & control , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
14.
Molecules ; 27(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080346

RESUMEN

Temperature swing solvent extraction (TSSE) utilizes an amine solvent with temperature-dependent water solubility to dissolve water at a lower temperature to concentrate or crystallize the brine and the phases are separated. Then, the water in solvent mixture is heated to reduce water solubility and cause phase separation between the solvent and water. The solvent and de-salted water phases are separated, and the regenerated solvent can be recycled. Issues with current TSSE solvents include the high solvent in water solubility and the high solvent volatility. This project used the highly tunable platform molecule imidazole to create two 1-butylimidazole isomers, specifically 1-propyl-4(5)-methylimidazole, to test their effectiveness for TSSE. The imidazoles take in more water than their current state-of-the-art counterparts, but do not desalinate the product water and dissolve in water at higher concentrations. Thus, while imidazoles make intriguing candidates for TSSE, further work is needed to understand how to design imidazoles that will be useful for TSSE applications.


Asunto(s)
Imidazoles , Agua , Solventes , Temperatura
16.
Cancer Gene Ther ; 29(12): 1961-1974, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35902730

RESUMEN

Long-term alcohol use is a confirmed risk factor of liver cancer tumorigenesis and metastasis. Multiple mechanisms responsible for alcohol related tumorigenesis have been proposed, including toxic reactive metabolite production, oxidative stress and fat accumulation. However, mechanisms underlying alcohol-mediated liver cancer metastasis remain largely unknown. We have previously demonstrated that SIRT7 regulates chemosensitivity by altering a p53-dependent pathway in human HCC. In the current study, we further revealed that SIRT7 is a critical factor in promoting liver cancer metastasis. SIRT7 expression is associated with disease stage and high SIRT7 predicts worse overall and disease-free survival. Overexpression of SIRT7 promotes HCC cell migration and EMT while knockdown of SIRT7 showed opposite effects. Mechanistically, we found that SIRT7 suppresses E-Cadherin expression through FOXO3-dependent promoter binding and H3K18 deacetylation. Knockdown of FOXO3 abolished the suppressive effect of SIRT7 on E-cadherin transcription. More importantly, we identified that alcohol treatment upregulates SIRT7 and suppresses E-cadherin expression via a CYP2E/ROS axis in hepatocytes both in vitro and in vivo. Antioxidant treatment in primary hepatocyte or CYP2E1-/- mice fed with alcohol impaired those effects. Reducing SIRT7 activity completely abolished alcohol-mediated promotion of liver cancer metastasis in vivo. Taken together, our data reveal that SIRT7 is a pivotal regulator of alcohol-mediated HCC metastasis.


Asunto(s)
Carcinoma Hepatocelular , Citocromo P-450 CYP2E1 , Neoplasias Hepáticas , Metástasis de la Neoplasia , Sirtuinas , Animales , Humanos , Ratones , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Citocromo P-450 CYP2E1/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Sirtuinas/genética , Sirtuinas/metabolismo , Regulación hacia Arriba
17.
Mol Biol Rep ; 49(8): 7611-7621, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35618937

RESUMEN

OBJECTIVE: Previous studies have found that forkhead box o3 S574 phosphorylation status can regulate inflammation by inducing monocytes/macrophages apoptosis, and whether it directly affects the inflammatory response of monocytes has not been demonstrated. The aim of this study was to investigate the role of forkhead box o3 in inflammatory response of monocytes against lipopolysaccharide. METHODS: THP-1 cells were used to knock down or overexpress forkhead box o3 and its mutants, and then detect the activation of inflammatory cytokines expression and activation of nuclear factor kappa B after lipopolysaccharide treatment. RESULTS: The present study demonstrated that lipopolysaccharide can up-regulate forkhead box o3 protein expression, especially the non-phosphorylated form at S574, in a post-transcriptional way. Knockdown of forkhead box o3 attenuated lipopolysaccharide mediated nuclear factor kappa B activation and downstream inflammatory cytokines expression. When overexpressing forkhead box o3, only non-phosphorylated S574A forkhead box o3 mutant enhanced lipopolysaccharide induced nuclear factor kappa B activation and inflammatory cytokines expression. Further studies have found that S574A forkhead box o3 may promote toll like receptor 4 expression through binding and accelerating its transcriptional activity from promoter. CONCLUSION: There might be a positive feedback loop between lipopolysaccharide and forkhead box o3 in monocytes to promote the lipopolysaccharide mediated inflammatory response.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Citocinas/genética , Citocinas/metabolismo , Proteína Forkhead Box O3/genética , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
18.
J Gastroenterol Hepatol ; 37(9): 1815-1821, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35613944

RESUMEN

BACKGROUND AND AIM: The American Association for the Study of Liver Diseases recommends a high index of suspicion for nonalcoholic steatohepatitis and advanced fibrosis in patients with type 2 diabetes (T2D) and an elevated fibrosis-4 index (FIB-4). We investigated the referral pattern of patients with T2D and FIB4 > 3.25 to the hepatology clinic and evaluated the clinical benefits to the patient. METHODS: We included patients aged 18-80 years with T2D and a FIB4 score >3.25 who had visited the internal medicine, family medicine, endocrinology clinic from 01/01/2014-5/31/2019. The first time point of high-risk FIB-4 was identified as the baseline for time-to-event analysis. The patients were classified based on whether they had visited the hepatology clinic (referred vs not referred). RESULTS: Of the 2174 patients, 290 (13.3%) were referred to the hepatology clinic, and 1884 (86.7%) were not referred. In multivariate analyses, the referred patients had a lower overall mortality risk (Hazard Ratio: 0.57; 95% CI: 0.38-87). Notably, the referred patients had the same rate of biochemical decompensation, as measured by progression to MELD ≥ 14, but a substantially higher rate of diagnosis in cirrhosis (27, 19-38) and cirrhosis complications, including ascites (2.9, 2.0-4.1), hepatic encephalopathy (99, 13-742), and liver cancer (14, 5-38). CONCLUSIONS: We found that patients with T2D and high-risk FIB4 are associated with better overall survival after referral to a hepatology clinic. We speculate that the survival difference is due to the increased recognition of cirrhosis and cirrhosis complications in the referred populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gastroenterología , Enfermedad del Hígado Graso no Alcohólico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Fibrosis , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Derivación y Consulta
19.
Hepatol Commun ; 6(8): 2042-2057, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35468265

RESUMEN

Alcohol-associated liver disease is a major cause of alcohol-related mortality. However, the mechanisms underlying disease progression are not fully understood. Recently we found that liver molecular pathways are altered by alcohol consumption differently in males and females. We were able to associate these sex-specific pathways with two upstream regulators: H3K4-specific demethylase enzymes KDM5B and KDM5C. Mice were fed the Lieber-DeCarli alcohol liquid diet for 3 weeks or a combination of a high-fat diet with alcohol in water for 16 weeks (western diet alcohol model [WDA] model). To assess the role of histone demethylases, mice were treated with AAV-shControl, AAV-shKdm5b, and/or AAV-shKdm5c and/or AAV-shAhR vectors. Gene expression and epigenetic changes after Kdm5b/5c knockdown were assessed by RNA-sequencing and H3K4me3 chromatin immunoprecipitation analysis. We found that less than 5% of genes affected by Kdm5b/Kdm5c knockdown were common between males and females. In females, Kdm5b/Kdm5c knockdown prevented fibrosis development in mice fed the WDA alcohol diet for 16 weeks and decreased fibrosis-associated gene expression in mice fed the Lieber-DeCarli alcohol liquid diet. In contrast, fibrosis was not affected by Kdm5b/Kdm5c knockdown in males. We found that KDM5B and KDM5C promote fibrosis in females through down-regulation of the aryl hydrocarbon receptor (AhR) pathway components in hepatic stellate cells. Kdm5b/Kdm5c knockdown resulted in an up-regulation of Ahr, Arnt, and Aip in female but not in male mice, thus preventing fibrosis development. Ahr knockdown in combination with Kdm5b/Kdm5c knockdown restored profibrotic gene expression. Conclusion: KDM5 demethylases contribute to differences between males and females in the alcohol response in the liver. The KDM5/AhR axis is a female-specific mechanism of fibrosis development in alcohol-fed mice.


Asunto(s)
Consumo de Bebidas Alcohólicas , Proteínas de Unión al ADN , Histona Demetilasas con Dominio de Jumonji , Cirrosis Hepática , Lisina , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Epigénesis Genética , Femenino , Histona Demetilasas , Histona Demetilasas con Dominio de Jumonji/genética , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Lisina/genética , Masculino , Ratones
20.
Front Physiol ; 13: 831004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264978

RESUMEN

This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA