Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39214853

RESUMEN

Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960 min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris , Destreza Motora , Plasticidad Neuronal , Sustancia Blanca , Humanos , Masculino , Imagen de Difusión Tensora/métodos , Plasticidad Neuronal/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Destreza Motora/fisiología , Adulto , Adulto Joven , Aprendizaje/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Imágenes de Resonancia Magnética Multiparamétrica/métodos
2.
iScience ; 27(7): 110229, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39006482

RESUMEN

Visual imagery and perception share neural machinery but rely on different information flow. While perception is driven by the integration of sensory feedforward and internally generated feedback information, imagery relies on feedback only. This suggests that although imagery and perception may activate overlapping brain regions, they do so in informationally distinctive ways. Using lamina-resolved MRI at 7 T, we measured the neural activity during imagery and perception of faces and scenes in high-level ventral visual cortex at the mesoscale of laminar organization that distinguishes feedforward from feedback signals. We found distinctive laminar profiles for imagery and perception of scenes and faces in the parahippocampal place area and the fusiform face area, respectively. Our findings provide insight into the neural basis of the phenomenology of visual imagery versus perception and shed new light into the mesoscale organization of feedforward and feedback information flow in high-level ventral visual cortex.

3.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39046457

RESUMEN

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Corteza Visual , Vías Visuales , Humanos , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen de Difusión Tensora/métodos , Mapeo Encefálico/métodos , Vías Visuales/fisiología , Vías Visuales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos
4.
Commun Biol ; 7(1): 777, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937535

RESUMEN

The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.


Asunto(s)
Envejecimiento , Locus Coeruleus , Imagen por Resonancia Magnética , Norepinefrina , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Locus Coeruleus/metabolismo , Humanos , Masculino , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Anciano , Femenino , Adulto , Norepinefrina/metabolismo , Persona de Mediana Edad , Adulto Joven
5.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831210

RESUMEN

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Asunto(s)
Encéfalo , Conectoma , Pan troglodytes , Sustancia Blanca , Pan troglodytes/anatomía & histología , Animales , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma/métodos , Masculino , Vías Nerviosas/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Mapeo Encefálico/métodos
6.
Magn Reson Med ; 92(5): 1898-1912, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38817204

RESUMEN

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.


Asunto(s)
Axones , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Reproducibilidad de los Resultados , Masculino , Algoritmos , Imagen Eco-Planar/métodos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Artefactos , Encéfalo/diagnóstico por imagen
7.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38410457

RESUMEN

Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slab-inversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multi-echo gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.

8.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38187724

RESUMEN

The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both ß-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with fair reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.

9.
Eur J Neurol ; 31(4): e16196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38258488

RESUMEN

BACKGROUND AND PURPOSE: In acute spinal cord injury (SCI), magnetic resonance imaging (MRI) reveals tissue bridges and neurodegeneration for 2 years. This 5-year study aims to track initial lesion changes, subsequent neurodegeneration, and their impact on recovery. METHODS: This prospective longitudinal study enrolled acute SCI patients and healthy controls who were assessed clinically-and by MRI-regularly from 3 days postinjury up to 60 months. We employed histologically cross-validated quantitative MRI sequences sensitive to volume, myelin, and iron changes, thereby reflecting indirectly processes of neurodegeneration and neuroinflammation. General linear models tracked lesion and remote changes in volume, myelin- and iron-sensitive magnetic resonance indices over 5 years. Associations between lesion, degeneration, and recovery (using the Spinal Cord Independence Measure [SCIM] questionnaire and the International Standards for Neurological Classification of Spinal Cord Injury total motor score) were assessed. RESULTS: Patients' motor scores improved by an average of 12.86 (95% confidence interval [CI] = 6.70-19.00) points, and SCIM by 26.08 (95% CI = 17.00-35.20) points. Within 3-28 days post-SCI, lesion size decreased by more than two-thirds (3 days: 302.52 ± 185.80 mm2 , 28 days: 76.77 ± 88.62 mm2 ), revealing tissue bridges. Cervical cord and corticospinal tract volumes transiently increased in SCI patients by 5% and 3%, respectively, accompanied by cervical myelin decreases and iron increases. Over time, progressive atrophy was observed in both regions, which was linked to early lesion dynamics. Tissue bridges, reduced swelling, and myelin content decreases were predictive of long-term motor score recovery and improved SCIM score. CONCLUSIONS: Studying acute changes and their impact on longer follow-up provides insights into SCI trajectory, highlighting the importance of acute intervention while indicating the potential to influence outcomes in the later stages.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Estudios Longitudinales , Estudios Prospectivos , Recuperación de la Función , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/rehabilitación , Médula Espinal/patología , Tractos Piramidales/patología , Imagen por Resonancia Magnética/métodos , Hierro
10.
Front Neurosci ; 17: 1133086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694109

RESUMEN

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

11.
Neuron ; 111(17): 2756-2772.e7, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390820

RESUMEN

Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.


Asunto(s)
Corteza Entorrinal , Lóbulo Temporal , Animales , Humanos , Lóbulo Temporal/diagnóstico por imagen , Corteza Entorrinal/diagnóstico por imagen , Memoria , Neuroimagen , Imagen por Resonancia Magnética/métodos , Hipocampo/anatomía & histología
12.
Neuroimage ; 275: 120152, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37142169

RESUMEN

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.


Asunto(s)
Médula Cervical , Médula Espinal , Adulto Joven , Animales , Humanos , Reproducibilidad de los Resultados , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Médula Cervical/fisiología , Encéfalo , Asta Dorsal de la Médula Espinal , Imagen por Resonancia Magnética/métodos
13.
Neuroimage ; 274: 120128, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116765

RESUMEN

Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1 h of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network.


Asunto(s)
Destreza Motora , Sustancia Blanca , Masculino , Humanos , Aprendizaje , Sustancia Blanca/diagnóstico por imagen , Extremidad Superior , Vaina de Mielina , Plasticidad Neuronal
14.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37029886

RESUMEN

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Asunto(s)
Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Imagen de Cuerpo Entero/métodos , Alemania , Campos Magnéticos
15.
Elife ; 122023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36888685

RESUMEN

The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.


Asunto(s)
Complejo IV de Transporte de Electrones , Corteza Visual , Animales , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Mapeo Encefálico , Corteza Visual/fisiología , Disparidad Visual , Imagen por Resonancia Magnética
16.
Neuroimage ; 271: 120046, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948280

RESUMEN

Short MRI acquisition time, high signal-to-noise ratio, and high reliability are crucial for image quality when scanning healthy volunteers and patients. Cross-sectional cervical cord area (CSA) has been suggested as a marker of neurodegeneration and potential outcome measure in clinical trials and is conventionally measured on T1-weigthed 3D Magnetization Prepared Rapid Acquisition Gradient-Echo (MPRAGE) images. This study aims to reduce the acquisition time for the comprehensive assessment of the spinal cord, which is typically based on MPRAGE for morphometry and multi-parameter mapping (MPM) for microstructure. The MPRAGE is replaced by a synthetic T1-w MRI (synT1-w) estimated from the MPM, in order to measure CSA. SynT1-w images were reconstructed using the MPRAGE signal equation based on quantitative maps of proton density (PD), longitudinal (R1) and effective transverse (R2*) relaxation rates. The reliability of CSA measurements from synT1-w images was determined within a multi-center test-retest study format and validated against acquired MPRAGE scans by assessing the agreement between both methods. The response to pathological changes was tested by longitudinally measuring spinal cord atrophy following spinal cord injury (SCI) for synT1-w and MPRAGE using linear mixed effect models. CSA measurements based on the synT1-w MRI showed high intra-site (Coefficient of variation [CoV]: 1.43% to 2.71%) and inter-site repeatability (CoV: 2.90% to 5.76%), and only a minor deviation of -1.65 mm2 compared to MPRAGE. Crucially, by assessing atrophy rates and by comparing SCI patients with healthy controls longitudinally, differences between synT1-w and MPRAGE were negligible. These results demonstrate that reliable estimates of CSA can be obtained from synT1-w images, thereby reducing scan time significantly.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Reproducibilidad de los Resultados , Estudios Transversales , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Traumatismos de la Médula Espinal/patología , Atrofia/patología
17.
Neuroimage Clin ; 37: 103339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36758456

RESUMEN

BACKGROUND: Following spinal cord injury (SCI), disease processes spread gradually along the spinal cord forming a spatial gradient with most pronounced changes located at the lesion site. However, the dynamics of this gradient in SCI patients is not established. OBJECTIVE: This study tracks the spatiotemporal dynamics of remote anterograde and retrograde spinal tract degeneration in the upper cervical cord following SCI over two years utilizing quantitative MRI. METHODS: Twenty-three acute SCI patients (11 paraplegics, 12 tetraplegics) and 21 healthy controls were scanned with a T1-weighted sequence for volumetry and a FLASH sequence for myelin-sensitive magnetization transfer saturation (MTsat) of the upper cervical cord. We estimated myelin content from MTsat maps within the corticospinal tracts (CST) and dorsal columns (DC) and measured spinal cord atrophy by means of left-right width (LRW) and anterior-posterior width (APW) on the T1-weighted images across cervical levels C1-C3. MTsat in the CST and LRW were considered proxies for retrograde degeneration, while MTsat in the DC and APW provided evidence for anterograde degeneration, respectively. Using regression models, we compared the temporal and spatial trajectories of these MRI readouts between tetraplegics, paraplegics, and controls over a 2-year period and assessed their associations with clinical improvement. RESULTS: Linear rates and absolute differences in myelin-sensitive MTsat indicated retrograde and anterograde neurodegeneration in the CST and DC, respectively. Changes in MTsat within the CST and in LRW progressively developed over time forming a gradient towards lower cervical levels by 2 years after injury, especially in tetraplegics (change per cervical level in MTsat: -0.247 p.u./level, p = 0.034; in LRW: -0.323 mm/level, p = 0.024). MTsat within the DC was already decreased at cervical levels C1-C3 at baseline (1.5 months after injury) in both tetra- and paraplegics, while linear decreases in APW over time were similar across C1-C3, preserving the spatial gradient. The relative improvement in light touch score was associated with MTsat within the DC at baseline (rs = 0.575, p = 0.014). CONCLUSION: Rostral and remote to the injury, the CST and DC show ongoing structural changes, indicative of myelin reductions and atrophy within 2 years after SCI. While anterograde degeneration in the DC was already detectable uniformly at C1-C3 early following SCI, retrograde degeneration in the CST developed over time revealing specific spatial and temporal neurodegenerative gradients. Disentangling and quantifying such dynamic pathological processes may provide biomarkers for regenerative and remyelinating therapies along entire spinal pathways.


Asunto(s)
Degeneración Retrógrada , Traumatismos de la Médula Espinal , Humanos , Estudios Longitudinales , Degeneración Retrógrada/complicaciones , Degeneración Retrógrada/patología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Tractos Piramidales/patología , Atrofia/patología
18.
Cereb Cortex ; 33(8): 4606-4611, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36169574

RESUMEN

There is emerging evidence that sampling the blood-oxygen-level-dependent (BOLD) response with high temporal resolution opens up new avenues to study the in vivo functioning of the human brain with functional magnetic resonance imaging. Because the speed of sampling and the signal level are intrinsically connected in magnetic resonance imaging via the T1 relaxation time, optimization efforts usually must make a trade-off to increase the temporal sampling rate at the cost of the signal level. We present a method, which combines a sparse event-related stimulus paradigm with subsequent data reshuffling to achieve high temporal resolution while maintaining high signal levels (HiHi). The proof-of-principle is presented by separately measuring the single-voxel time course of the BOLD response in both the primary visual and primary motor cortices with 100-ms temporal resolution.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Hemodinámica/fisiología , Oxígeno
19.
Cereb Cortex ; 33(9): 5704-5716, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36520483

RESUMEN

Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (${R_{1}}$), effective transverse relaxation rate (${R_{2}}^{\ast }$), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (${R_{2}}^{\ast }$ at 3T, ${R_{1}}$ at 7T), endothelial cells (${R_{1}}$ and MTsat at 3T), microglia (${R_{1}}$ and MTsat at 3T, ${R_{1}}$ at 7T), and oligodendrocytes and oligodendrocyte precursor cells (${R_{1}}$ at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types.


Asunto(s)
Neocórtex , Humanos , Células Endoteliales , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos
20.
Magn Reson Med ; 89(4): 1385-1400, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36373175

RESUMEN

PURPOSE: Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY: The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS: C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS: The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION: The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.


Asunto(s)
Encéfalo , Pan troglodytes , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Calibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA