Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750019

RESUMEN

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Succinatos , Animales , Humanos , Viroterapia Oncolítica/métodos , Succinatos/farmacología , Ratones , Línea Celular Tumoral , Interferón Tipo I/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias del Colon/terapia , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Antivirales/farmacología , FN-kappa B/metabolismo , Quinasa I-kappa B/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inflamación/tratamiento farmacológico , Femenino , Virus de la Estomatitis Vesicular Indiana/fisiología , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
J Virol ; 97(10): e0132523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823646

RESUMEN

IMPORTANCE: Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.


Asunto(s)
Antivirales , Proteína Exportina 1 , Gripe Humana , Succinatos , Replicación Viral , Humanos , Transporte Activo de Núcleo Celular , Antivirales/farmacología , Proteínas Nucleares/metabolismo , Replicación Viral/efectos de los fármacos , Succinatos/farmacología , Proteína Exportina 1/metabolismo
4.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316487

RESUMEN

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Asunto(s)
COVID-19 , Interferón Tipo I , Trombosis , Humanos , Anticoagulantes , Tromboplastina , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Escherichia coli , Inflamación , Lipopolisacáridos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspasas
5.
Cells ; 11(19)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36231089

RESUMEN

In 2011, the Nobel Prize in Physiology or Medicine was awarded to three immunologists: Bruce A. Beutler, Jules A. Hoffmann, and Ralph M. Steinman. While Steinman was honored for his work on dendritic cells and adaptive immunity, Beutler and Hoffman received the prize for their contributions to discoveries in innate immunity. In 1996, Hoffmann found the toll gene to be crucial for mounting antimicrobial responses in fruit flies, first implicating this developmental gene in immune signaling. Two years later, Beutler built on this observation by describing a Toll-like gene, tlr4, as the receptor for the bacterial product LPS, representing a crucial step in innate immune activation and protection from bacterial infections in mammals. These publications spearheaded research in innate immune sensing and sparked a huge interest regarding innate defense mechanisms in the following years and decades. Today, Beutler and Hoffmann's research has not only resulted in the discovery of the role of multiple TLRs in innate immunity but also in a much broader understanding of the molecular components of the innate immune system. In this review, we aim to collect the discoveries leading up to the publications of Beutler and Hoffmann, taking a close look at how early advances in both developmental biology and immunology converged into the research awarded with the Nobel Prize. We will also discuss how these discoveries influenced future research and highlight the importance they hold today.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Inmunidad Innata , Mamíferos , Premio Nobel , Transducción de Señal
6.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216540

RESUMEN

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Asunto(s)
Linaje de la Célula , Poliaminas/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Colitis/inmunología , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epigenoma , Histonas/metabolismo , Inflamación/inmunología , Inflamación/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ornitina Descarboxilasa/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factores de Transcripción/metabolismo
7.
Immunol Cell Biol ; 99(2): 122-125, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33179321

RESUMEN

Balic et al. describe a new role for STAT3 in TLR4 signalling in macrophages, linking LPS mediated activation of this innate immune receptor to phosphorylation of mitochondrial STAT3, resulting in distinct metabolic reprogramming.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
8.
Metabolites ; 10(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086598

RESUMEN

In the past decade, the rise of immunometabolism has fundamentally reshaped the face of immunology. As the functions and properties of many (immuno)metabolites have now been well described, their exchange among cells and their environment have only recently sparked the interest of immunologists. While many metabolites bind specific receptors to induce signaling cascades, some are actively exchanged between cells to communicate, or induce metabolic reprograming. In this review, we give an overview about how active metabolite transport impacts immune cell function and shapes immunological responses. We present some examples of how specific transporters feed into metabolic pathways and initiate intracellular signaling events in immune cells. In particular, we focus on the role of metabolite transporters in the activation and effector functions of T cells and macrophages, as prototype adaptive and innate immune cell populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA