Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Acta Radiol ; : 2841851241258402, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872362

RESUMEN

BACKGROUND: With rising breast augmentations worldwide, there is an increasing clinical need for an early and accurate detection of implant complications. PURPOSE: To compare the quality of chemical shift encoding-based (CSE) water-fat-silicone separation compared to double inversion recovery (DIR) silicone-only imaging in breast magnetic resonance imaging (MRI). MATERIAL AND METHODS: This retrospective, single-center study included women with silicone implants subjected to 3-T MRI between January 2021 and March 2022. MRI included (i) two-dimensional silicone-only T2-weighted turbo spin echo DIR acquisition and (ii) three-dimensional CSE imaging based on multi-echo gradient-echo sequence enabling water-, fat-, and silicone-image separation. Images were evaluated and compared by three independent radiologists using a clinically established rating including differentiability of the silicone implant, visibility and contouring of the adjacent fibrous capsule, and accuracy of intralesional folds in a ranking of 1-5. The apparent contrast-to-noise (aCNR) was calculated. RESULTS: In 71 women, the average quality of water-fat-silicone images from CSE imaging was assessed as "good" (assessment 4 ± 0.9). In 68 (96%) patients, CSE imaging achieved a concise delineation of the silicone implant and precise visualization of the fibrous capsule that was not distinguishable in DIR imaging. Implant ruptures were more easily detected in CSE imaging. The aCNR was higher in CSE compared to DIR imaging (18.43 ± 9.8 vs. 14.73 ± 2.5; P = 0.002). CONCLUSION: Intrinsically co-registered water-fat-silicone-separated CSE-based images enable a reliable assessment of silicone implants. The simultaneously improved differentiability of the implant and fibrous capsule may provide clinicians with a valuable tool for an accurate evaluation of implant integrity and early detection of potential complications.

2.
MAGMA ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743376

RESUMEN

PURPOSE: To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS: A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS: Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION: Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.

3.
Magn Reson Med ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730562

RESUMEN

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

4.
NMR Biomed ; : e5147, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561247

RESUMEN

Partial Fourier encoding is popular in single-shot (ss) diffusion-weighted (DW) echo planar imaging (EPI) because it enables a shorter echo time (TE) and, hence, improves the signal-to-noise-ratio. Motion during diffusion encoding causes k-space shifting and dispersion, which compromises the quality of the homodyne reconstruction. This work provides a comprehensive understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data in the presence of motion-induced phase and proposes the motion-induced phase-corrected homodyne (mpc-hdyne) reconstruction method to ameliorate these artifacts. Simulations with different types of motion-induced phase were performed to provide an understanding of the potential artifacts that occur in the homodyne reconstruction of partial Fourier ss-DW-EPI data. To correct for the artifacts, the mpc-hdyne reconstruction is proposed. The algorithm recenters k-space, updates the partial Fourier factor according to detected global k-space shifts, and removes low-resolution nonlinear phase before the conventional homodyne reconstruction. The mpc-hdyne reconstruction is tested on both simulation and in vivo data. Motion-induced phase can cause signal overestimation, worm artifacts, and signal loss in partial Fourier ss-DW-EPI data with the conventional homodyne reconstruction. Simulation and in vivo data showed that the proposed mpc-hdyne reconstruction ameliorated artifacts, yielding higher quality DW images compared with conventional homodyne reconstruction. Based on the understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data, the mpc-hdyne reconstruction was proposed and showed superior performance compared with the conventional homodyne reconstruction on both simulation and in vivo data.

5.
Magn Reson Imaging ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599503

RESUMEN

BACKGROUND AND PURPOSE: Long acquisition times limit the feasibility of established non-contrast-enhanced MRA (non-CE-MRA) techniques. The purpose of this study was to evaluate a highly accelerated flow-independent sequence (Relaxation-Enhanced Angiography without Contrast and Triggering [REACT]) for imaging of the extracranial arteries in acute ischemic stroke (AIS). MATERIALS AND METHODS: Compressed SENSE (CS) accelerated (factor 7) 3D isotropic REACT (fixed scan time: 01:22 min, reconstructed voxel size 0.625 × 0.625 × 0.75 mm3) and CE-MRA (CS factor 6, scan time: 1:08 min, reconstructed voxel size 0.5 mm3) were acquired in 76 AIS patients (69.4 ±â€¯14.3 years, 33 females) at 3 Tesla. Two radiologists assessed scans for the presence of internal carotid artery (ICA) stenosis and stated their diagnostic confidence using a 5-point scale (5 = excellent). Vessel quality of cervical arteries as well as the impact of artifacts and image noise were scored on 5-point scales (5 = excellent/none). Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured for the common carotid artery (CCA) and ICA (C1-segment). RESULTS: REACT provided a sensitivity of 88.5% and specificity of 100% for clinically relevant (≥50%) ICA stenosis with substantial concordance to CE-MRA regarding stenosis grading (Cohen's kappa 0.778) and similar diagnostic confidence (REACT: mean 4.5 ±â€¯0.4 vs. CE-MRA: 4.5 ±â€¯0.6; P = 0.674). Presence of artifacts (3.6 ±â€¯0.5 vs. 3.5 ±â€¯0.7; P = 0.985) and vessel quality (all segments: 3.6 ±â€¯0.7 vs. 3.8 ±â€¯0.7; P = 0.004) were comparable between both techniques with REACT showing higher scores at the CCA (4.3 ±â€¯0.6 vs. 3.8 ±â€¯0.9; P < 0.001) and CE-MRA at V2- (3.3 ±â€¯0.5 vs. 3.9 ±â€¯0.8; P < 0.001) and V3-segments (3.3 ±â€¯0.5 vs. 4.0 ±â€¯0.8; P < 0.001). For all vessels, REACT showed a lower impact of image noise (3.8 ±â€¯0.6 vs. 3.6 ±â€¯0.7; P = 0.024) while yielding higher aSNR (52.5 ±â€¯15.1 vs. 37.9 ±â€¯12.5; P < 0.001) and aCNR (49.4 ±â€¯15.0 vs. 34.7 ±â€¯12.3; P < 0.001) for all vessels combined. CONCLUSIONS: In patients with acute ischemic stroke, highly accelerated REACT provides an accurate detection of ICA stenosis with vessel quality and scan time comparable to CE-MRA.

6.
Eur J Radiol ; 175: 111418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490130

RESUMEN

PURPOSE: To investigate the potential of combining Compressed Sensing (CS) and a newly developed AI-based super resolution reconstruction prototype consisting of a series of convolutional neural networks (CNN) for a complete five-minute 2D knee MRI protocol. METHODS: In this prospective study, 20 volunteers were examined using a 3T-MRI-scanner (Ingenia Elition X, Philips). Similar to clinical practice, the protocol consists of a fat-saturated 2D-proton-density-sequence in coronal, sagittal and transversal orientation as well as a sagittal T1-weighted sequence. The sequences were acquired with two different resolutions (standard and low resolution) and the raw data reconstructed with two different reconstruction algorithms: a conventional Compressed SENSE (CS) and a new CNN-based algorithm for denoising and subsequently to interpolate and therewith increase the sharpness of the image (CS-SuperRes). Subjective image quality was evaluated by two blinded radiologists reviewing 8 criteria on a 5-point Likert scale and signal-to-noise ratio calculated as an objective parameter. RESULTS: The protocol reconstructed with CS-SuperRes received higher ratings than the time-equivalent CS reconstructions, statistically significant especially for low resolution acquisitions (e.g., overall image impression: 4.3 ±â€¯0.4 vs. 3.4 ±â€¯0.4, p < 0.05). CS-SuperRes reconstructions for the low resolution acquisition were comparable to traditional CS reconstructions with standard resolution for all parameters, achieving a scan time reduction from 11:01 min to 4:46 min (57 %) for the complete protocol (e.g. overall image impression: 4.3 ±â€¯0.4 vs. 4.0 ±â€¯0.5, p < 0.05). CONCLUSION: The newly-developed AI-based reconstruction algorithm CS-SuperRes allows to reduce scan time by 57% while maintaining unchanged image quality compared to the conventional CS reconstruction.


Asunto(s)
Algoritmos , Voluntarios Sanos , Articulación de la Rodilla , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Estudios Prospectivos , Adulto , Articulación de la Rodilla/diagnóstico por imagen , Compresión de Datos/métodos , Redes Neurales de la Computación , Persona de Mediana Edad , Relación Señal-Ruido , Interpretación de Imagen Asistida por Computador/métodos , Adulto Joven
7.
NMR Biomed ; 37(5): e5097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269568

RESUMEN

PURPOSE: Liver T1 mapping techniques typically require long breath holds or long scan time in free-breathing, need correction for B 1 + inhomogeneities and process composite (water and fat) signals. The purpose of this work is to accelerate the multi-slice acquisition of liver water selective T1 (wT1) mapping in a single breath hold, improving the k-space sampling efficiency. METHODS: The proposed continuous inversion-recovery (IR) Look-Locker methodology combines a single-shot gradient echo spiral readout, Dixon processing and a dictionary-based analysis for liver wT1 mapping at 3 T. The sequence parameters were adapted to obtain short scan times. The influence of fat, B 1 + inhomogeneities and TE on the estimation of T1 was first assessed using simulations. The proposed method was then validated in a phantom and in 10 volunteers, comparing it with MRS and the modified Look-Locker inversion-recovery (MOLLI) method. Finally, the clinical feasibility was investigated by comparing wT1 maps with clinical scans in nine patients. RESULTS: The phantom results are in good agreement with MRS. The proposed method encodes the IR-curve for the liver wT1 estimation, is minimally sensitive to B 1 + inhomogeneities and acquires one slice in 1.2 s. The volunteer results confirmed the multi-slice capability of the proposed method, acquiring nine slices in a breath hold of 11 s. The present work shows robustness to B 1 + inhomogeneities ( wT 1 , No B 1 + = 1.07 wT 1 , B 1 + - 45.63 , R 2 = 0.99 ) , good repeatability ( wT 1 , 2 ° = 1 . 0 wT 1 , 1 ° - 2.14 , R 2 = 0.96 ) and is in better agreement with MRS ( wT 1 = 0.92 wT 1 MRS + 103.28 , R 2 = 0.38 ) than is MOLLI ( wT 1 MOLLI = 0.76 wT 1 MRS + 254.43 , R 2 = 0.44 ) . The wT1 maps in patients captured diverse lesions, thus showing their clinical feasibility. CONCLUSION: A single-shot spiral acquisition can be combined with a continuous IR Look-Locker method to perform rapid repeatable multi-slice liver water T1 mapping at a rate of 1.2 s per slice without a B 1 + map. The proposed method is suitable for nine-slice liver clinical applications acquired in a single breath hold of 11 s.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Abdomen , Respiración , Fantasmas de Imagen , Reproducibilidad de los Resultados , Corazón
8.
Eur J Radiol ; 170: 111246, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056345

RESUMEN

PURPOSE: To evaluate the diagnostic performance of CT-like MR images reconstructed with an algorithm combining compressed sense (CS) with deep learning (DL) in patients with suspected osseous shoulder injury compared to conventional CS-reconstructed images. METHODS: Thirty-two patients (12 women, mean age 46 ± 14.9 years) with suspected traumatic shoulder injury were prospectively enrolled into the study. All patients received MR imaging of the shoulder, including a CT-like 3D T1-weighted gradient-echo (T1 GRE) sequence and in case of suspected fracture a conventional CT. An automated DL-based algorithm, combining CS and DL (CS DL) was used to reconstruct images of the same k-space data as used for CS reconstructions. Two musculoskeletal radiologists assessed the images for osseous pathologies, image quality and visibility of anatomical landmarks using a 5-point Likert scale. Moreover, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. RESULTS: Compared to CT, all acute fractures (n = 23) and osseous pathologies were detected accurately on the CS only and CS DL images with almost perfect agreement between the CS DL and CS only images (κ 0.95 (95 %confidence interval 0.82-1.00). Image quality as well as the visibility of the fracture lines, bone fragments and glenoid borders were overall rated significantly higher for the CS DL reconstructions than the CS only images (CS DL range 3.7-4.9 and CS only range 3.2-3.8, P = 0.01-0.04). Significantly higher SNR and CNR values were observed for the CS DL reconstructions (P = 0.02-0.03). CONCLUSION: Evaluation of traumatic shoulder pathologies is feasible using a DL-based algorithm for reconstruction of high-resolution CT-like MR imaging.


Asunto(s)
Aprendizaje Profundo , Fracturas Óseas , Lesiones del Hombro , Humanos , Femenino , Adulto , Persona de Mediana Edad , Hombro , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Lesiones del Hombro/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Imagenología Tridimensional/métodos
9.
Front Cardiovasc Med ; 10: 1305649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099228

RESUMEN

Aim: The purpose of this study was to investigate the clinical application of Compressed SENSE accelerated single-breath-hold LGE with 3D isotropic resolution compared to conventional LGE imaging acquired in multiple breath-holds. Material & Methods: This was a retrospective, single-center study including 105 examinations of 101 patients (48.2 ± 16.8 years, 47 females). All patients underwent conventional breath-hold and 3D single-breath-hold (0.96 × 0.96 × 1.1 mm3 reconstructed voxel size, Compressed SENSE factor 6.5) LGE sequences at 1.5 T in clinical routine for the evaluation of ischemic or non-ischemic cardiomyopathies. Two radiologists independently evaluated the left ventricle (LV) for the presence of hyperenhancing lesions in each sequence, including localization and transmural extent, while assessing their scar edge sharpness (SES). Confidence of LGE assessment, image quality (IQ), and artifacts were also rated. The impact of LV ejection fraction (LVEF), heart rate, body mass index (BMI), and gender as possible confounders on IQ, artifacts, and confidence of LGE assessment was evaluated employing ordinal logistic regression analysis. Results: Using 3D single-breath-hold LGE readers detected more hyperenhancing lesions compared to conventional breath-hold LGE (n = 246 vs. n = 216 of 1,785 analyzed segments, 13.8% vs. 12.1%; p < 0.0001), pronounced at subendocardial, midmyocardial, and subepicardial localizations and for 1%-50% of transmural extent. SES was rated superior in 3D single-breath-hold LGE (4.1 ± 0.8 vs. 3.3 ± 0.8; p < 0.001). 3D single-breath-hold LGE yielded more artifacts (3.8 ± 1.0 vs. 4.0 ± 3.8; p = 0.002) whereas IQ (4.1 ± 1.0 vs. 4.2 ± 0.9; p = 0.122) and confidence of LGE assessment (4.3 ± 0.9 vs. 4.3 ± 0.8; p = 0.374) were comparable between both techniques. Female gender negatively influenced artifacts in 3D single-breath-hold LGE (p = 0.0028) while increased heart rate led to decreased IQ in conventional breath-hold LGE (p = 0.0029). Conclusions: In clinical routine, Compressed SENSE accelerated 3D single-breath-hold LGE yields image quality and confidence of LGE assessment comparable to conventional breath-hold LGE while providing improved delineation of smaller LGE lesions with superior scar edge sharpness. Given the fast acquisition of 3D single-breath-hold LGE, the technique holds potential to drastically reduce the examination time of CMR.

10.
Tomography ; 9(5): 1839-1856, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37888738

RESUMEN

Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.


Asunto(s)
Artefactos , Hígado , Estudios Retrospectivos , Reproducibilidad de los Resultados , Hígado/diagnóstico por imagen , Movimiento (Física) , Imagen de Difusión por Resonancia Magnética/métodos
11.
Int J Cardiol ; 390: 131203, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37480997

RESUMEN

OBJECTIVE: To compare the measurement of aortic diameters using a novel flow-independent MR-Angiography (3D modified Relaxation-Enhanced Angiography without Contrast and Triggering (modified REACT)) and transthoracic echocardiography (TTE) in Marfan syndrome (MFS) patients. MATERIAL AND METHODS: This retrospective, single-center analysis included 46 examinations of 32 MFS patients (mean age 37.5 ± 11.3 years, 17 women, no prior aortic surgery) who received TTE and 3D modified REACT (ECG- and respiratory-triggering, Compressed SENSE factor 9 for acceleration of image acquisition) of the thoracic aorta. Aortic diameters (sinus of Valsalva (SV), sinotubular junction (STJ), and ascending aorta (AoA)) were independently measured by two cardiologists in TTE (leading-edge) and two radiologists in modified REACT (inner-edge, using multiplanar reconstruction). Intraclass correlation coefficient, Bland-Altman analyses, and Pearson's correlation (r) were used to assess agreement between observers and methods. RESULTS: Interobserver correlation at the SV, STJ, and AoA were excellent for both, TTE (ICC = 0.95-0.98) and modified REACT (ICC = 0.99-1.00). There was no significant difference between TTE and modified REACT for diameters measured at the SV (39.24 ± 3.24 mm vs. 39.63 ± 3.76 mm; p = 0.26; r = 0.78) and the STJ (35.16 ± 4.47 mm vs. 35.37 ± 4.74 mm; p = 0.552; r = 0.87). AoA diameters determined by TTE were larger than in modified REACT (34.29 ± 5.31 mm vs. 30.65 ± 5.64 mm; p < 0.01; r = 0.74). The mean scan time of modified REACT was 05:06 min ± 02:47 min, depending on the patient's breathing frequency and heart rate. CONCLUSIONS: Both TTE and modified REACT showed a strong correlation for all aortic levels; however, at the AoA, diameters were larger using TTE, mostly due to the limited field of view of the latter with measurements being closer to the aortic valve. Given the excellent interobserver correlation and the strong agreement with TTE, modified REACT represents an attractive method to depict the thoracic aorta in MFS patients.


Asunto(s)
Aorta Torácica , Síndrome de Marfan , Humanos , Femenino , Adulto , Persona de Mediana Edad , Aorta Torácica/diagnóstico por imagen , Síndrome de Marfan/diagnóstico por imagen , Estudios Retrospectivos , Ecocardiografía/métodos , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
12.
Eur Radiol ; 33(12): 8617-8626, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37453986

RESUMEN

OBJECTIVES: To evaluate and compare the diagnostic performance of CT-like images based on a 3D T1-weighted spoiled gradient-echo sequence (T1 GRE), an ultra-short echo time sequence (UTE), and a 3D T1-weighted spoiled multi-echo gradient-echo sequence (FRACTURE) with conventional CT in patients with suspected osseous shoulder pathologies. MATERIALS AND METHODS: Patients with suspected traumatic dislocation of the shoulder (n = 46, mean age 40 ± 14.5 years, 19 women) were prospectively recruited and received 3-T MR imaging including 3D T1 GRE, UTE, and 3D FRACTURE sequences. CT was performed in patients with acute fractures and served as standard of reference (n = 25). Agreement of morphological features between the modalities was analyzed including the glenoid bone loss, Hill-Sachs interval, glenoid track, and the anterior straight-line length. Agreement between the modalities was assessed using Bland-Altman plots, Student's t-test, and Pearson's correlation coefficient. Inter- and intrareader assessment was evaluated with weighted Cohen's κ and intraclass correlation coefficient. RESULTS: All osseous pathologies were detected accurately on all three CT-like sequences (n = 25, κ = 1.00). No significant difference in the percentage of glenoid bone loss was found between CT (mean ± standard deviation, 20.3% ± 8.0) and CT-like MR images (FRACTURE 20.6% ± 7.9, T1 GRE 20.4% ± 7.6, UTE 20.3% ± 7.7, p > 0.05). When comparing the different measurements on CT-like images, measurements performed using the UTE images correlated best with CT. CONCLUSION: Assessment of bony Bankart lesions and other osseous pathologies was feasible and accurate using CT-like images based on 3-T MRI compared with conventional CT. Compared to the T1 GRE and FRACTURE sequence, the UTE measurements correlated best with CT. CLINICAL RELEVANCE STATEMENT: In an acute trauma setting, CT-like images based on a T1 GRE, UTE, or FRACTURE sequence might be a useful alternative to conventional CT scan sparing associated costs as well as radiation exposure. KEY POINTS: • No significant differences were found for the assessment of the glenoid bone loss when comparing measurements of CT-like MR images with measurements of conventional CT images. • Compared to the T1 GRE and FRACTURE sequence, the UTE measurements correlated best with CT whereas the FRACTURE sequence appeared to be the most robust regarding motion artifacts. • The T1 GRE sequence had the highest resolution with high bone contrast and detailed delineation of even small fractures but was more susceptible to motion artifacts.


Asunto(s)
Enfermedades Óseas Metabólicas , Fracturas Óseas , Articulación del Hombro , Humanos , Femenino , Adulto , Persona de Mediana Edad , Hombro , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Articulación del Hombro/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Imagenología Tridimensional/métodos
13.
Eur J Radiol ; 165: 110919, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302338

RESUMEN

OBJECTIVE: To asses the correlation of data derived from dual-layer (DL)-CT material-maps and breast MRI data with molecular biomarkers in invasive breast carcinomas. METHODS: All patients at the University Breast Cancer Center who underwent a clinically indicated DLCT-scan and a breast MRI for staging of invasive ductal breast cancer from 2016 to 2020 were prospectively included. Iodine concentration-maps, and Zeffective-maps were reconstructed from the CT-datasets. T1w- and T2w-signal intensities, ADC and the clustered shapes of the dynamic-curves (washout, plateau, persistent) were derived from the MRI-datasets. ROI-based evaluations of the cancers and the reference "musculature" were performed semi-automatically in identical anatomical positions using dedicated evaluation software. Statistical analysis was essentially descriptive using Spearmans rank correlation and (multivariable) partial correlation. RESULTS: The signal intensities measured in the 3rd phase of the contrast dynamics correlated at an intermediate level of significance with the iodine content and the Zeffective-values derived from the breast target lesions (Spearmans rank correlation-coefficient r = 0.237/0.236, p = 0.002/0.003). The bivariate and the multivariate analyses displayed correlations of an intermediate significance level of the iodine content and the Zeff-values measured in the breast target lesions with immunhistochemical subtyping (r = 0.211-0.243, p = 0.002-0.009, respectively). The Zeff-values showed the strongest correlations when normalized to the values measured in the musculature and in the aorta (r = -0.237 to -0.305, r=<0.001-0.003). The MRI-assessments showed correlations of intermediate to high significance and low to intermediate significance between the ratios of the T2w-signal intensities and the trends of the dynamic curves measured in the breast target lesions and in musculature and immunohistochemical cancer subtyping, respectively (T2w: r = 0.232-0.249, p = 0.003/0.002; dynamics: r = -0.322/-0.245, p=<0.001/0.002). The ratios of the clustered trends of the dynamic curves measured in the breast target lesions and in musculature correlated with tumor grading on intermediate significance level (r = -0.213 and -0.194, p = 0.007/0.016) and with Ki-67 on a low significance level (bivariate analysis: r = -0.160, p = 0.040). There was only a weak correlation between the ADC-values measured in the breast target lesions and HER2-expression (bivariate ansalysis: r = 0.191, p = 0.030). CONCLUSIONS: Our preliminary results indicate that evaluation of perfusion based DLCT-data and MRI-biomarkers show correlations with the immunhistochemical subtyping of invasive ductal breast carcinomas. Further clinical research is warranted in order to validate the value of the results and define clinical situations in which the use of the described DLCT-biomaker and MRI biomarkers may be helpful in clinical patient care.


Asunto(s)
Neoplasias de la Mama , Yodo , Humanos , Femenino , Imagen por Resonancia Magnética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Biomarcadores , Tomografía Computarizada por Rayos X/métodos
14.
Magn Reson Med ; 90(3): 1209-1218, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37125658

RESUMEN

PURPOSE: To (a) develop a preconditioned water-fat-silicone total field inversion (wfsTFI) algorithm that directly estimates the susceptibility map from complex multi-echo data in the breast in the presence of silicone and to (b) evaluate the performance of wfsTFI for breast quantitative susceptibility mapping (QSM) in silico and in vivo in comparison with formerly proposed methods. METHODS: Numerical simulations and in vivo multi-echo gradient echo breast measurements were performed to compare wfsTFI to a previously proposed field map-based linear total field inversion algorithm (lTFI) with and without the consideration of the chemical shift of silicone in the field map estimation step. Specifically, a simulation based on an in vivo scan and data from five patients were included in the analysis. RESULTS: In the simulation, wfsTFI is able to significantly decrease the normalized root mean square error from lTFI without (4.46) and with (1.77) the consideration of the chemical shift of silicone to 0.68. Both the in silico and in vivo wfsTFI susceptibility maps show reduced shadowing artifacts in local tissue adjacent to silicone, reduced streaking artifacts and no erroneous single voxels of diamagnetic susceptibility in proximity to silicone. CONCLUSION: The proposed wfsTFI method can automatically distinguish between subjects with and without silicone. Furthermore wfsTFI accounts for the presence of silicone in the QSM dipole inversion and allows for the robust estimation of susceptibility in proximity to silicone breast implants and hence allows the visualization of structures that would otherwise be dominated by artifacts on susceptibility maps.


Asunto(s)
Mama , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Algoritmos , Artefactos , Simulación por Computador , Agua , Mapeo Encefálico/métodos , Encéfalo , Procesamiento de Imagen Asistido por Computador/métodos
15.
Eur Radiol ; 33(10): 6892-6901, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37133518

RESUMEN

OBJECTIVES: To examine the effect of high-b-value computed diffusion-weighted imaging (cDWI) on solid lesion detection and classification in pancreatic intraductal papillary mucinous neoplasm (IPMN), using endoscopic ultrasound (EUS) and histopathology as a standard of reference. METHODS: Eighty-two patients with known or suspected IPMN were retrospectively enrolled. Computed high-b-value images at b = 1000 s/mm2 were calculated from standard (b = 0, 50, 300, and 600 s/mm2) DWI images for conventional full field-of-view (fFOV, 3 × 3 × 4 mm3 voxel size) DWI. A subset of 39 patients received additional high-resolution reduced-field-of-view (rFOV, 2.5 × 2.5 × 3 mm3 voxel size) DWI. In this cohort, rFOV cDWI was compared against fFOV cDWI additionally. Two experienced radiologists evaluated (Likert scale 1-4) image quality (overall image quality, lesion detection and delineation, fluid suppression within the lesion). In addition, quantitative image parameters (apparent signal-to-noise ratio (aSNR), apparent contrast-to-noise ratio (aCNR), contrast ratio (CR)) were assessed. Diagnostic confidence regarding the presence/absence of diffusion-restricted solid nodules was assessed in an additional reader study. RESULTS: High-b-value cDWI at b = 1000 s/mm2 outperformed acquired DWI at b = 600 s/mm2 regarding lesion detection, fluid suppression, aCNR, CR, and lesion classification (p = < .001-.002). Comparing cDWI from fFOV and rFOV revealed higher image quality in high-resolution rFOV-DWI compared to conventional fFOV-DWI (p ≤ .001-.018). High-b-value cDWI images were rated non-inferior to directly acquired high-b-value DWI images (p = .095-.655). CONCLUSIONS: High-b-value cDWI may improve the detection and classification of solid lesions in IPMN. Combining high-resolution imaging and high-b-value cDWI may further increase diagnostic precision. CLINICAL RELEVANCE STATEMENT: This study shows the potential of computed high-resolution high-sensitivity diffusion-weighted magnetic resonance imaging for solid lesion detection in pancreatic intraductal papillary mucinous neoplasia (IPMN). The technique may enable early cancer detection in patients under surveillance. KEY POINTS: • Computed high-b-value diffusion-weighted imaging (cDWI) may improve the detection and classification of intraductal papillary mucinous neoplasms (IPMN) of the pancreas. • cDWI calculated from high-resolution imaging increases diagnostic precision compared to cDWI calculated from conventional-resolution imaging. • cDWI has the potential to strengthen the role of MRI for screening and surveillance of IPMN, particularly in view of the rising incidence of IPMNs combined with now more conservative therapeutic approaches.


Asunto(s)
Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Estudios Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagen , Relación Señal-Ruido , Imagen de Difusión por Resonancia Magnética/métodos , Páncreas
16.
Eur Radiol ; 33(7): 4875-4884, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36806569

RESUMEN

OBJECTIVES: To evaluate the diagnostic performance of an automated reconstruction algorithm combining MR imaging acquired using compressed SENSE (CS) with deep learning (DL) in order to reconstruct denoised high-quality images from undersampled MR images in patients with shoulder pain. METHODS: Prospectively, thirty-eight patients (14 women, mean age 40.0 ± 15.2 years) with shoulder pain underwent morphological MRI using a pseudo-random, density-weighted k-space scheme with an acceleration factor of 2.5 using CS only. An automated DL-based algorithm (CS DL) was used to create reconstructions of the same k-space data as used for CS reconstructions. Images were analyzed by two radiologists and assessed for pathologies, image quality, and visibility of anatomical landmarks using a 4-point Likert scale. RESULTS: Overall agreement for the detection of pathologies between the CS DL reconstructions and CS images was substantial to almost perfect (κ 0.95 (95% confidence interval 0.82-1.00)). Image quality and the visibility of the rotator cuff, articular cartilage, and axillary recess were overall rated significantly higher for CS DL images compared to CS (p < 0.03). Contrast-to-noise ratios were significantly higher for cartilage/fluid (CS DL 198 ± 24.3, CS 130 ± 32.2, p = 0.02) and ligament/fluid (CS DL 184 ± 17.3, CS 141 ± 23.5, p = 0.03) and SNR values were significantly higher for ligaments and muscle of the CS DL reconstructions (p < 0.04). CONCLUSION: Evaluation of shoulder pathologies was feasible using a DL-based algorithm for MRI reconstruction and denoising. In clinical routine, CS DL may be beneficial in particular for reducing image noise and may be useful for the detection and better discrimination of discrete pathologies. Assessment of shoulder pathologies was feasible with improved image quality as well as higher SNR using a compressed sensing deep learning-based framework for image reconstructions and denoising. KEY POINTS: • Automated deep learning-based reconstructions showed a significant increase in signal-to-noise ratio and contrast-to-noise ratio (p < 0.04) with only a slight increase of reconstruction time of 40 s compared to CS. • All pathologies were accurately detected with no loss of diagnostic information or prolongation of the scan time. • Significant improvements of the image quality as well as the visibility of the rotator cuff, articular cartilage, and axillary recess were detected.


Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Dolor de Hombro/diagnóstico por imagen , Hombro/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos
17.
Diagnostics (Basel) ; 13(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36766523

RESUMEN

Compressed sensing accelerates magnetic resonance imaging (MRI) acquisition by undersampling of the k-space. Yet, excessive undersampling impairs image quality when using conventional reconstruction techniques. Deep-learning-based reconstruction methods might allow for stronger undersampling and thus faster MRI scans without loss of crucial image quality. We compared imaging approaches using parallel imaging (SENSE), a combination of parallel imaging and compressed sensing (COMPRESSED SENSE, CS), and a combination of CS and a deep-learning-based reconstruction (CS AI) on raw k-space data acquired at different undersampling factors. 3D T2-weighted images of the lumbar spine were obtained from 20 volunteers, including a 3D sequence (standard SENSE), as provided by the manufacturer, as well as accelerated 3D sequences (undersampling factors 4.5, 8, and 11) reconstructed with CS and CS AI. Subjective rating was performed using a 5-point Likert scale to evaluate anatomical structures and overall image impression. Objective rating was performed using apparent signal-to-noise and contrast-to-noise ratio (aSNR and aCNR) as well as root mean square error (RMSE) and structural-similarity index (SSIM). The CS AI 4.5 sequence was subjectively rated better than the standard in several categories and deep-learning-based reconstructions were subjectively rated better than conventional reconstructions in several categories for acceleration factors 8 and 11. In the objective rating, only aSNR of the bone showed a significant tendency towards better results of the deep-learning-based reconstructions. We conclude that CS in combination with deep-learning-based image reconstruction allows for stronger undersampling of k-space data without loss of image quality, and thus has potential for further scan time reduction.

18.
Invest Radiol ; 58(3): 199-208, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070524

RESUMEN

OBJECTIVE: Before implementing radiomics in routine clinical practice, comprehensive knowledge about the repeatability and reproducibility of radiomic features is required. The aim of this study was to systematically investigate the influence of image processing parameters on radiomic features from magnetic resonance imaging (MRI) in terms of feature values as well as test-retest repeatability. MATERIALS AND METHODS: Utilizing a phantom consisting of 4 onions, 4 limes, 4 kiwifruits, and 4 apples, we acquired a test-retest dataset featuring 3 of the most commonly used MRI sequences on a 3 T scanner, namely, a T1-weighted, a T2-weighted, and a fluid-attenuated inversion recovery sequence, each at high and low resolution. After semiautomatic image segmentation, image processing with systematic variation of image processing parameters was performed, including spatial resampling, intensity discretization, and intensity rescaling. For each respective image processing setting, a total of 45 radiomic features were extracted, corresponding to the following 7 matrices/feature classes: conventional indices, histogram matrix, shape matrix, gray-level zone length matrix, gray-level run length matrix, neighboring gray-level dependence matrix, and gray-level cooccurrence matrix. Systematic differences of individual features between different resampling steps were assessed using 1-way analysis of variance with Tukey-type post hoc comparisons to adjust for multiple testing. Test-retest repeatability of radiomic features was measured using the concordance correlation coefficient, dynamic range, and intraclass correlation coefficient. RESULTS: Image processing influenced radiological feature values. Regardless of the acquired sequence and feature class, significant differences ( P < 0.05) in feature values were found when the size of the resampled voxels was too large, that is, bigger than 3 mm. Almost all higher-order features depended strongly on intensity discretization. The effects of intensity rescaling were negligible except for some features derived from T1-weighted sequences. For all sequences, the percentage of repeatable features (concordance correlation coefficient and dynamic range ≥ 0.9) varied considerably depending on the image processing settings. The optimal image processing setting to achieve the highest percentage of stable features varied per sequence. Irrespective of image processing, the fluid-attenuated inversion recovery sequence in high-resolution overall yielded the highest number of stable features in comparison with the other sequences (89% vs 64%-78% for the respective optimal image processing settings). Across all sequences, the most repeatable features were generally obtained for a spatial resampling close to the originally acquired voxel size and an intensity discretization to at least 32 bins. CONCLUSION: Variation of image processing parameters has a significant impact on the values of radiomic features as well as their repeatability. Furthermore, the optimal image processing parameters differ for each MRI sequence. Therefore, it is recommended that these processing parameters be determined in corresponding test-retest scans before clinical application. Extensive repeatability, reproducibility, and validation studies as well as standardization are required before quantitative image analysis and radiomics can be reliably translated into routine clinical care.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen
19.
Eur Radiol ; 33(6): 3810-3818, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36538074

RESUMEN

OBJECTIVES: There is a clinical need for a non-ionizing, quantitative assessment of breast density, as one of the strongest independent risk factors for breast cancer. This study aims to establish proton density fat fraction (PDFF) as a quantitative biomarker for fat tissue concentration in breast MRI and correlate mean breast PDFF to mammography. METHODS: In this retrospective study, 193 women were routinely subjected to 3-T MRI using a six-echo chemical shift encoding-based water-fat sequence. Water-fat separation was based on a signal model accounting for a single T2* decay and a pre-calibrated 7-peak fat spectrum resulting in volumetric fat-only, water-only images, PDFF- and T2*-values. After semi-automated breast segmentation, PDFF and T2* values were determined for the entire breast and fibroglandular tissue. The mammographic and MRI-based breast density was classified by visual estimation using the American College of Radiology Breast Imaging Reporting and Data System categories (ACR A-D). RESULTS: The PDFF negatively correlated with mammographic and MRI breast density measurements (Spearman rho: -0.74, p < .001) and revealed a significant distinction between all four ACR categories. Mean T2* of the fibroglandular tissue correlated with increasing ACR categories (Spearman rho: 0.34, p < .001). The PDFF of the fibroglandular tissue showed a correlation with age (Pearson rho: 0.56, p = .03). CONCLUSION: The proposed breast PDFF as an automated tissue fat concentration measurement is comparable with mammographic breast density estimations. Therefore, it is a promising approach to an accurate, user-independent, and non-ionizing breast density assessment that could be easily incorporated into clinical routine breast MRI exams. KEY POINTS: • The proposed PDFF strongly negatively correlates with visually determined mammographic and MRI-based breast density estimations and therefore allows for an accurate, non-ionizing, and user-independent breast density measurement. • In combination with T2*, the PDFF can be used to track structural alterations in the composition of breast tissue for an individualized risk assessment for breast cancer.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama , Humanos , Femenino , Protones , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/diagnóstico por imagen , Agua , Tejido Adiposo/diagnóstico por imagen
20.
Magn Reson Med ; 89(1): 144-160, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098347

RESUMEN

PURPOSE: To assess the effect of respiratory motion and cardiac driven pulsation in renal DWI and to examine asymmetrical velocity-compensated diffusion encoding waveforms for robust ADC mapping in the kidneys. METHODS: The standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) and the asymmetric bipolar velocity-compensated (asym-vc) diffusion encoding waveforms were used for coronal renal DWI at 3T. The robustness of the ADC quantification in the kidneys was tested with the aforementioned waveforms in respiratory-triggered and breath-held cardiac-triggered scans at different trigger delays in 10 healthy subjects. RESULTS: The pgse waveform showed higher ADC values in the right kidney at short trigger delays in comparison to longer trigger delays in the respiratory triggered scans when the diffusion gradient was applied in the feet-head (FH) direction. The coefficient of variation over all respiratory trigger delays, averaged over all subjects was 0.15 for the pgse waveform in the right kidney when diffusion was measured in the FH direction; the corresponding coefficient of variation for the asym-vc waveform was 0.06. The effect of cardiac driven pulsation was found to be small in comparison to the effect of respiratory motion. CONCLUSION: Short trigger delays in respiratory-triggered scans can cause higher ADC values in comparison to longer trigger delays in renal DWI, especially in the right kidney when diffusion is measured in the FH direction. The asym-vc waveform can reduce ADC variation due to respiratory motion in respiratory-triggered scans at the cost of reduced SNR compared to the pgse waveform.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Riñón , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Riñón/diagnóstico por imagen , Corazón/diagnóstico por imagen , Difusión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA