Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biofilm ; 3: 100061, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825176

RESUMEN

Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm-associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds between sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic agents for chronic wound infections.

2.
J Vis Exp ; (174)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34424229

RESUMEN

Biofilm-related infections are implicated in a wide array of chronic conditions such as non-healing diabetic foot ulcers, chronic sinusitis, reoccurring otitis media, and many more. Microbial cells within these infections are protected by an extracellular polymeric substance (EPS), which can prevent antibiotics and host immune cells from clearing the infection. To overcome this obstacle, investigators have begun developing dispersal agents as potential therapeutics. These agents target various components within the biofilm EPS, weakening the structure, and initiating dispersal of the bacteria, which can theoretically improve antibiotic potency and immune clearance. To determine the efficacy of dispersal agents for wound infections, we have developed protocols that measure biofilm dispersal both ex vivo and in vivo. We use a mouse surgical excision model that has been well-described to create biofilm-associated chronic wound infections. To monitor dispersal in vivo, we infect the wounds with bacterial strains that express luciferase. Once mature infections have established, we irrigate the wounds with a solution containing enzymes that degrade components of the biofilm EPS. We then monitor the location and intensity of the luminescent signal in the wound and filtering organs to provide information about the level of dispersal achieved. For ex vivo analysis of biofilm dispersal, infected wound tissue is submerged in biofilm-degrading enzyme solution, after which the bacterial load remaining in the tissue, versus the bacterial load in solution, is assessed. Both protocols have strengths and weaknesses and can be optimized to help accurately determine the efficacy of dispersal treatments.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Infección de Heridas , Animales , Antibacterianos/uso terapéutico , Biopelículas , Ratones , Pseudomonas aeruginosa
3.
Artículo en Inglés | MEDLINE | ID: mdl-32793516

RESUMEN

Chronic wounds will impact 2% of the United States population at some point in their life. These wounds are often associated with a reoccurring, chronic infection caused by a community of microorganisms encased in an extracellular polymeric substance (EPS), or a biofilm. Biofilm-associated microbes can exhibit tolerance to antibiotics, which has prompted researchers to investigate therapeutics that improve antibiotic efficacy. Glycoside hydrolases (GHs), enzymes that target the polysaccharide linkages within the EPS, are one potential adjunctive therapy. In order to develop GH-based therapeutics, it is imperative that we understand whether the composition of biofilm EPS changes based on the environment and/or presence of other microbes. Here, we utilized α-amylase and cellulase to target the polysaccharides within the EPS of mono- and dual-species Pseudomonas aeruginosa and Staphylococcus aureus biofilms in three different models that vary in clinical relevancy. We show that biofilms established in an in vitro well-plate model are not strongly adhered to the polystyrene surface and do not accurately reflect the GH efficacy seen with biofilms grown in vivo. However, dispersal efficacy in an in vitro wound microcosm model was more reflective of that seen in a murine wound model. We also saw a striking loss of efficacy for cellulase to disperse S. aureus in both mono- and dual species biofilms grown in the wound models, suggesting that EPS constituents may be altered depending on the environment.


Asunto(s)
Glicósido Hidrolasas , Staphylococcus aureus , Animales , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Ratones , Pseudomonas aeruginosa
4.
Biofilm ; 2: 100037, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33447822

RESUMEN

The complexity of microbial biofilms offers several challenges to the use of traditional means of microbial research. In particular, it can be difficult to calculate accurate numbers of biofilm bacteria, because even after thorough homogenization or sonication, small pieces of the biofilm remain, which contain numerous bacterial cells and result in inaccurately low colony forming units (CFU). In addition, imaging of infected tissue ex vivo often results in a disparity between the CFU and the number of bacterial cells observed under the microscope. We hypothesized that this phenomenon is due to the biofilm extracellular polymeric substance decreasing the accessibility of stains and antibodies to the embedded bacterial cells. In this study, we describe incorporating EPS-degrading glycoside hydrolases for CFU determination to obtain a more accurate estimation of the viable cells and for immunohistochemistry to disrupt the biofilm matrix and increase primary antibody binding to the bacterial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA