Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Transl Neurodegener ; 13(1): 17, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561866

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein, resulting from a CAG repeat expansion in the huntingtin gene HTT. HD is characterized by a variety of debilitating symptoms including involuntary movements, cognitive impairment, and psychiatric disturbances. Despite considerable efforts, effective disease-modifying treatments for HD remain elusive, necessitating exploration of novel therapeutic approaches, including lifestyle modifications that could delay symptom onset and disease progression. Recent studies suggest that time-restricted eating (TRE), a form of intermittent fasting involving daily caloric intake within a limited time window, may hold promise in the treatment of neurodegenerative diseases, including HD. TRE has been shown to improve mitochondrial function, upregulate autophagy, reduce oxidative stress, regulate the sleep-wake cycle, and enhance cognitive function. In this review, we explore the potential therapeutic role of TRE in HD, focusing on its underlying physiological mechanisms. We discuss how TRE might enhance the clearance of mHTT, recover striatal brain-derived neurotrophic factor levels, improve mitochondrial function and stress-response pathways, and synchronize circadian rhythm activity. Understanding these mechanisms is critical for the development of targeted lifestyle interventions to mitigate HD pathology and improve patient outcomes. While the potential benefits of TRE in HD animal models are encouraging, future comprehensive clinical trials will be necessary to evaluate its safety, feasibility, and efficacy in persons with HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , Ayuno , Estrés Oxidativo
2.
J Huntingtons Dis ; 13(1): 55-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489193

RESUMEN

Background: Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction caused by a mutant huntingtin protein. Compromised metabolic activity resulting from systemic administration of the mitochondrial toxin, 3-nitropropionic acid (3-NP), is known to mimic the pathology of HD and induce HD-like symptoms in rats. N-hexanoic-Tyr-Ile-(6)-amino hexanoic amide (PNB-0408), also known as Dihexa, has been shown to have neuroprotective and procognitive properties in animal models of Alzheimer's and Parkinson's diseases. Given the mechanism of action and success in other neurodegenerative diseases, we felt it an appropriate compound to investigate further for HD. Objective: The present study was designed to test if PNB-0408, an angiotensin IV analog, could attenuate 3-NP-induced HD-like symptoms in rats and serve as a potential therapeutic agent. Methods: Forty male Wistar rats were randomized into three groups consisting of a "vehicle" group, a "3-NP" group, and a "3-NP + PNB-0408" group. PNB-0408 was administered along with chronic exposure to 3-NP. Animal body weight, motor function, and cognitive abilities were measured for five weeks, before euthanasia and histopathological analysis. Results: Exposure to 3-NP decreased the amount of weight rats gained, impaired spatial learning and memory consolidation, and led to marked motor dysfunction. From our observations and analysis, PNB-0408 did not protect rats from the deficits induced by 3-NP neurotoxicity. Conclusions: Our findings suggest that PNB-0408 may not be an efficacious treatment strategy for preventing 3-NP-induced HD-like symptoms in a preclinical model. These data highlight the need for further research of this compound in alternate models and/or alternative approaches to managing this disorder.


Asunto(s)
Angiotensina II/análogos & derivados , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Masculino , Animales , Ratas Wistar , Enfermedad de Huntington/inducido químicamente , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Nitrocompuestos/toxicidad , Nitrocompuestos/uso terapéutico , Propionatos/toxicidad , Propionatos/uso terapéutico , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA