Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(6): 3494-3589, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478597

RESUMEN

The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.

2.
Angew Chem Int Ed Engl ; 63(13): e202314876, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305641

RESUMEN

The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA-LiNO3 ) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA- preferentially interacts with moisture over PF6 - to strengthen the moisture tolerance of designed electrolyte, and 3) NO3 - is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+ -enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.

3.
Sci Bull (Beijing) ; 69(11): 1686-1696, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423878

RESUMEN

Rational carbonate electrolyte chemistry is critical for the development of high-voltage lithium metal batteries (LMBs). However, the implementation of traditional carbonate electrolyte is greatly hindered by the generation of an unstable electrode interphase and corrosive by-product (HF). Herein, we propose a triple-function eutectic solvent additive of N-methylacetamide (NmAc) with LiNO3 to enhance the stability and compatibility of carbonate electrolyte. Firstly, the addition of NmAc significantly improves the solubility of LiNO3 in carbonate electrolyte by forming an eutectic pair, which regulates the Li+ solvation structure and leads to dense and homogenous Li plating. Secondly, the hydrolysis of acidic PF5 is effectively alleviated due to the strong complexation of NmAc with PF5, thus reducing the generation of corrosive HF. In addition, the optimized cathode electrolyte interphase layer decreases the structural degradation and transition metal dissolution. Consequently, Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells with the designed electrolyte deliver superior long-term cycle reversibility and excellent rate capability. This study unveils the rationale for incorporating eutectic solvent additives within carbonate electrolytes, which significantly contribute to the advancement of their practical application for high-voltage LMBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA