Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
iScience ; 27(7): 110217, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38993663

RESUMEN

Sucrose is the transport form of carbohydrate in plants serving as signal molecule besides nutrition, but the signaling is elusive. Here, neutral invertase 8 (OsNIN8) mutated at G461R into OsNIN8m, which increased its charge and hydrophobicity, decreased hydrolysis of sucrose to 13% and firmer binding to sucrose than the wildtype. This caused downstream metabolites and energy accumulation forming overnutrition. Paradoxically, division of subinitials in longitudinal cell lineages was only about 15 times but more than 100 times in wildtype, resulting in short radicle. Further, mutation of OsNIN8 into deficiency of hydrolysis but maintenance of sucrose binding allowed cell division until ran out of energy showing the association but not hydrolysis gave the signal. Chemically, sucrose binding to OsNIN8 was exothermic but to OsNIN8m was endothermic. Therefore, OsNIN8m lost the signal function owing to change of thermodynamic state. So, OsNIN8 sensed sucrose for cell division besides hydrolyzed sucrose.

2.
Metab Brain Dis ; 39(5): 679-690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842661

RESUMEN

Subarachnoid hemorrhage (SAH) is a serious hemorrhagic event with high mortality and morbidity. Multiple injurious events produced by SAH can lead to a series of pathophysiologic processes in the hypothalamus that can severely impact patients' life. These pathophysiologic processes usually result in physiologic derangements and dysfunction of the brain and multiple organs. This dysfunction involved multiple dimensions of the genome and metabolome. In our study, we induced the SAH model in rats to obtain hypothalamic tissue and serum. The samples were subsequently analyzed by transcriptomics and metabolomics. Next, the functional enrichment analysis of the differentially expressed genes and metabolites were performed by GO and KEGG pathway analysis. Through transcriptomic analysis of hypothalamus samples, 263 up-regulated differential genes, and 207 down-regulated differential genes were identified in SAH groups compared to Sham groups. In the KEGG pathway analysis, a large number of differential genes were found to be enriched in IL-17 signaling pathway, PI3K-Akt signaling pathway, and bile secretion. Liquid chromatography-mass spectrometry metabolomics technology was conducted on the serum of SAH rats and identified 11 up-regulated and 26 down-regulated metabolites in positive ion model, and 1 up-regulated and 10 down-regulated metabolites in negative ion model. KEGG pathways analysis showed that differentially expressed metabolites were mainly enriched in pathways of bile secretion and primary bile acid biosynthesis. We systematically depicted the neuro- and metabolism-related biomolecular changes occurring in the hypothalamus after SAH by performing transcriptomics and metabolomics studies. These biomolecular changes may provide new insights into hypothalamus-induced metabolic changes and gene expression after SAH.


Asunto(s)
Hipotálamo , Metabolómica , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Transcriptoma , Animales , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/genética , Ratas , Hipotálamo/metabolismo , Masculino , Perfilación de la Expresión Génica , Metaboloma
3.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804490

RESUMEN

Understanding the dynamics of excited-state vibrational energy relaxation in photosynthetic pigments is crucial for elucidating the mechanisms underlying energy transfer processes in light-harvesting complexes. Utilizing advanced femtosecond broadband transient fluorescence (TF) spectroscopy, we explored the excited-state vibrational dynamics of Chlorophyll-a (Chl-a) both in solution and within the light-harvesting complex II (LHCII). We discovered a vibrational cooling (VC) process occurring over ∼6 ps in Chl-a in ethanol solution following Soret band excitation, marked by a notable ultrafast TF blueshift and spectral narrowing. This VC process, crucial for regulating the vibronic lifetimes, was further elucidated through the direct observation of the population dynamics of higher vibrational states within the Qy electronic state. Notably, Chl-a within LHCII demonstrated significantly faster VC dynamics, unfolding within a few hundred femtoseconds and aligning with the ultrafast energy transfer processes observed within the complex. Our findings shed light on the complex interaction between electronic and vibrational states in photosynthetic pigments, underscoring the pivotal role of vibrational dynamics in enabling efficient energy transfer within light-harvesting complexes.

4.
Science ; 384(6691): 81-86, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574137

RESUMEN

Thermoelectric materials can realize direct and mutual conversion between electricity and heat. However, developing a strategy to improve high thermoelectric performance is challenging because of strongly entangled electrical and thermal transport properties. We demonstrate a case in which both pseudo-nanostructures of vacancy clusters and dynamic charge-carrier regulation of trapped-hole release have been achieved in p-type lead telluride-based materials, enabling the simultaneous regulations of phonon and charge carrier transports. We realized a peak zT value up to 2.8 at 850 kelvin and an average zT value of 1.65 at 300 to 850 kelvin. We also achieved an energy conversion efficiency of ~15.5% at a temperature difference of 554 kelvin in a segmented module. Our demonstration shows promise for mid-temperature thermoelectrics across a range of different applications.

5.
Nat Commun ; 15(1): 3171, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609379

RESUMEN

The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.

6.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517256

RESUMEN

Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.

7.
Angew Chem Int Ed Engl ; 63(16): e202401255, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38298118

RESUMEN

Polylactic acid (PLA) has attracted increasing interest as a sustainable plastic because it can be degraded into CO2 and H2O in nature. However, this process is sluggish, and even worse, it is a CO2-emitting and carbon resource waste process. Therefore, it is highly urgent to develop a novel strategy for recycling post-consumer PLA to achieve a circular plastic economy. Herein, we report a one-pot photoreforming route for the efficient and selective amination of PLA waste into value-added alanine using CoP/CdS catalysts under mild conditions. Results show the alanine production rate can reach up to 2.4 mmol gcat -1 h-1, with a high selectivity (>75 %) and excellent stability. Time-resolved transient absorption spectra (TAS) reveal that CoP can rapidly extract photogenerated electrons from CdS to accelerate proton reduction, favoring hole-dominated PLA oxidation to coproduce alanine. This study offers an appealing way for upcycling PLA waste and creates new opportunities for green synthesis of amino acids.

8.
Inorg Chem ; 63(10): 4691-4696, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38394615

RESUMEN

In this study, four isostructural pillar-layered frameworks were constructed using a porphyrin layer and an anthracene pillar, which served as the sensitizer and annihilator, respectively, in the triplet-triplet annihilation upconversion (TTA-UC) system. Framework 1 demonstrated the highest upconversion quantum yield of 1.01%. Additionally, 1 and 2 also exhibited down-conversion fluorescence resulting from the porphyrin component. A twist intramolecular charge transfer (TICT) state was observed in the bianthracene chromophore of 2, resulting in transient rotation of two anthracene rings and red-shifted emission. Both computational studies and experiments confirmed the transition from a locally excited state to a TICT state upon the inclusion of polar guest molecules into the framework.

9.
J Sci Food Agric ; 104(7): 3982-3991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252712

RESUMEN

BACKGROUND: Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), ß-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 µg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION: These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Citrus , Monoterpenos Ciclohexánicos , Neoplasias , Aceites Volátiles , Animales , Ratones , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Limoneno/farmacología , Citrus/química , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aceites de Plantas/química
10.
Adv Mater ; 36(19): e2312676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290714

RESUMEN

Broad-spectrum-driven high-performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad-spectrum (ultraviolet-visible-near infrared light) (UV-vis-NIR)-driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited-state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near-infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.

11.
ChemSusChem ; 17(2): e202301041, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37768029

RESUMEN

Solar hydrogen production at a high efficiency holds the significant importance in the age of energy crisis, while the micro-environment manipulation of active sites on photocatalysts plays a profound role in enhancing the catalytic performance. In this work, a series of well-defined single-site Ni-grafted TiO2 photocatalysts with unique and specific coordination environments, 2,2'-bipyridine-Ni-O-TiO2 (T-Ni Bpy) and 2-Phenylpyridine-Ni-O-TiO2 (T-Ni Phpy), were constructed with the methods of surface organometallic chemistry combined with surface ligand exchange for visible-light-induced photocatalytic hydrogen evolution reaction (HER). A prominent rate of 33.82 µmol ⋅ g-1 ⋅ h-1 and a turnover frequency of 0.451 h-1 for Ni are achieved over the optimal catalyst T-Ni Bpy for HER, 260-fold higher than those of Ni-O-TiO2 . Fewer electrons trapped oxygen vacancies and a larger portion of long-lived photogenerated electrons (>3 ns, ~52.9 %), which were demonstrated by the electron paramagnetic resonance and femtosecond transient IR absorption, correspond to the photocatalytic HER activity over the T-Ni Bpy. The number of long-lived free electrons injected from the Ni photoabsorber to the conduction band of TiO2 is one of the determining factors for achieving the excellent HER activity.

12.
J Phys Chem Lett ; 14(43): 9640-9645, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37870497

RESUMEN

Femtosecond helicity-resolved pump-probe spectroscopy is performed to study the spin and valley dynamics in monolayer (ML) MoS2. Both the bright to dark intravalley exciton transition (∼50 fs) and the reverse transition process (<50 fs) are directly monitored. It suggests that the bright exciton state of ML MoS2 is lower in energy than the dark one, which is also confirmed by observing the temperature-dependent co-polarized photobleaching dynamics of A and B excitons. Furthermore, the band splitting in the conduction band of ML MoS2 with a value of 15 ± 0.3 meV is determined by fitting the temperature-dependent ratios of the population in bright and dark states using the Boltzmann distribution law. Such minor band splitting allows the phonon-mediated intravalley spin-flip to even occur from the lower to the upper conduction band within tens of femtoseconds, which will have non-negligible effects on the performance of these ML MoS2-based optoelectronic and photonic devices.

13.
Nat Plants ; 9(9): 1547-1557, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653340

RESUMEN

The major light-harvesting complex of photosystem II (LHCII) has a dual regulatory function in a process called non-photochemical quenching to avoid the formation of reactive oxygen. LHCII undergoes reversible conformation transitions to switch between a light-harvesting state for excited-state energy transfer and an energy-quenching state for dissipating excess energy under full sunshine. Here we report cryo-electron microscopy structures of LHCII in membrane nanodiscs, which mimic in vivo LHCII, and in detergent solution at pH 7.8 and 5.4, respectively. We found that, under low pH conditions, the salt bridges at the lumenal side of LHCII are broken, accompanied by the formation of two local α-helices on the lumen side. The formation of α-helices in turn triggers allosterically global protein conformational change, resulting in a smaller crossing angle between transmembrane helices. The fluorescence decay rates corresponding to different conformational states follow the Dexter energy transfer mechanism with a characteristic transition distance of 5.6 Å between Lut1 and Chl612. The experimental observations are consistent with the computed electronic coupling strengths using multistate density function theory.


Asunto(s)
Oxígeno , Tilacoides , Regulación Alostérica , Microscopía por Crioelectrón , Transferencia de Energía
14.
Clin Cancer Res ; 29(19): 3859-3866, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477938

RESUMEN

PURPOSE: Glioblastoma (GBM) is a highly vascularized tumor with few treatment options after disease recurrence. Here, we report the efficacy and safety of anlotinib hydrochloride plus temozolomide in patients with recurrent GBM. PATIENTS AND METHODS: Patients with first definite postsurgical progression of histologically confirmed GBM preceded by standard radiotherapy and temozolomide chemotherapy were eligible for inclusion. All patients received temozolomide (150-200 mg/m2, orally, every day (QD) d1-5/4 wk) and anlotinib (10 mg, orally, QD, d1-14/3 wk) until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate by the Response Assessment in Neuro-Oncology (RANO) criteria. RESULTS: Twenty-one patients were enrolled between May 2020 and July 2021, with a median age of 55 (range 27-68) years old. According to the Response Assessment in Neuro-Oncology (RANO) criteria, tumor response occurred in 17 patients, of which 9 patients had a complete response, and the objective response rate was 81.0% [95% confidence interval (CI), 62.6-99.3]. The disease control rate was 95.2% (95% CI, 76.2-99.9), with three additional patients achieving a stable disease without tumor progression. The median PFS was 7.3 months (95% CI, 4.9-9.7), and the 6-month PFS rate was 61.9% (95% CI, 39.3-84.6). The median overall survival was 16.9 months (95% CI, 7.8-26.0). The most common adverse events were leukocytopenia (66.7%), thrombocytopenia (38.1%), and hypertriglyceridemia (38.1%). Five patients had nine grade 3 adverse events, with a 23.8% incidence rate. Two patients discontinued therapy due to ischemic stroke (grade 3) and wound dehiscence (grade 1), respectively. No grade 4 or treatment-related deaths occurred in this study. CONCLUSIONS: Anlotinib combined with temozolomide is efficacious and tolerated in patients with recurrent GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Adulto , Persona de Mediana Edad , Anciano , Temozolomida/efectos adversos , Glioblastoma/patología , Dacarbazina , Neoplasias Encefálicas/patología , Recurrencia Local de Neoplasia/patología , Inhibidores de la Angiogénesis/uso terapéutico
15.
Nat Commun ; 14(1): 3961, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407580

RESUMEN

Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iß822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.


Asunto(s)
Ficobilisomas , Synechocystis , Ficobilisomas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Microscopía por Crioelectrón , Synechocystis/metabolismo , Espectrometría de Fluorescencia , Transferencia de Energía , Proteínas Bacterianas/química
16.
J Am Chem Soc ; 145(26): 14190-14195, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37310385

RESUMEN

Several dumbbell conjugates featuring M3N@Ih-C80 (M = Sc, Y) and C60 were prepared to systematically investigate interfullerene electronic interactions and excited state dynamics. From electrochemical investigations, we concluded that the redox potentials of our M3N@Ih-C80 (M = Sc, Y) dumbbells depend largely on the interfullerene electronic interactions. Assisted by DFT calculation, the unique role of metal atoms was highlighted. Most importantly, ultrafast spectroscopy experiments revealed symmetry-breaking charge separation in Sc3N@C80-dumbbell to yield an unprecedented (Sc3N@C80)•+-(Sc3N@C80)•- charge separated state. This is, to the best of our knowledge, the first time that symmetry-breaking charge separation following photoexcitation is corroborated in a fullerene system. As such, our work shed light on the significance of interfullerene electronic interactions and their uniqueness for modulating excited state properties.

17.
J Phys Chem Lett ; 14(20): 4657-4665, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37167104

RESUMEN

Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.

18.
J Phys Chem Lett ; 14(18): 4151-4157, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37104064

RESUMEN

The electronic propensity rule, which suggests a proportional relationship between radiative and nonradiative electronic coupling elements in fluorescent molecules, has been postulated for some time. Despite its potential significance, the rule has not been rigorously derived and experimentally validated. In this work, we draw upon the theoretical framework established by Schuurmans et al. for the relation between the radiative and nonradiative electronic coupling elements of the rare earth metal in the crystal at low temperature and extend their approach to the fluorescent molecules under external electric field perturbation at a fixed energy gap and varied temperatures, with a further single-electron approximation (Schuurmans, M. F. H., et al. Physica B & C 1984, 123, 131-155). We obtained a linear relation between the radiative decay rates and nonradiative decay rates for internal conversion, which is verified by experimental data from two types of dextran-dye complexes and the light-harvesting antenna complex in photosynthetic bacteria.

19.
Nanotechnology ; 34(23)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877995

RESUMEN

In this work, ultrafast carrier dynamics of mechanically exfoliated 1T-TiSe2flakes from the high-quality single crystals with self-intercalated Ti atoms are investigated by femtosecond transient absorption spectroscopy. The observed coherent acoustic and optical phonon oscillations after ultrafast photoexcitation reveal the strong electron-phonon coupling in 1T-TiSe2. The ultrafast carrier dynamics probed in both visible and mid-infrared regions indicate that some photogenerated carriers localize near the intercalated Ti atoms and form small polarons rapidly within several picoseconds after photoexcitation due to the strong and short-range electron-phonon coupling. The formation of polarons leads to a reduction of carrier mobility and a long-time relaxation process of photoexcited carriers for several nanoseconds. The formation and dissociation rates of the photoinduced polarons are dependent on both the pump fluence and the thickness of TiSe2sample. This work offers new insights into the photogenerated carrier dynamics of 1T-TiSe2, and emphasizes the effects of intercalated atoms on the electron and lattice dynamics after photoexcitation.

20.
J Am Chem Soc ; 145(10): 5769-5777, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863033

RESUMEN

A series of novel surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids were for the first time prepared by a combined procedure of surface organometallic chemistry with post-synthetic ligand exchange for photocatalytic conversion of CO2 to CH4 with H2 as electron and proton donors under visible light irradiation. The selectivity toward CH4 increased to 93.4% by the ligand exchange of 4,4'-dimethyl-2,2'-bipyridine (4,4'-bpy) with the surface cyclopentadienyl (Cp)-RuH complex and the CO2 methanation activity was enhanced by 4.4-fold. An impressive rate of 241.2 µL·g-1·h-1 for CH4 production was achieved over the optimal photocatalyst. The femtosecond transient IR absorption results demonstrated that the hot electrons were fast injected in 0.9 ps from the photoexcited surface 4,4'-bpy-RuH complex into the conduction band of TiO2 nanoparticles to form a charge-separated state with an average lifetime of ca. 50.0 ns responsible for the CO2 methanation. The spectral characterizations indicated clearly that the formation of CO2•- radicals by single electron reduction of CO2 molecules adsorbed on surface oxygen vacancies of TiO2 nanoparticles was the most critical step for the methanation. Such radical intermediates were inserted into the explored Ru-H bond to generate Ru-OOCH species and finally CH4 and H2O in the presence of H2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA