Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Pathogens ; 10(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209937

RESUMEN

OBJECTIVE: the main purpose of this work was to compare the genetic and phenotypic changes of E. coli treated with silver nanoformulations (E. coli BW25113 wt, E. coli BW25113 AgR, E. coli J53, E. coli ATCC 11229 wt, E. coli ATCC 11229 var. S2 and E. coli ATCC 11229 var. S7). Silver, as the metal with promising antibacterial properties, is currently widely used in medicine and the biomedical industry, in both ionic and nanoparticles forms. Silver nanoformulations are usually considered as one type of antibacterial agent, but their physical and chemical properties determine the way of interactions with the bacterial cell, the mode of action, and the bacterial cell response to silver. METHODS: the changes in the bacterial genome, resulting from the treatment of bacteria with various silver nanoformulations, were verified by analyzing of genes (selected with mutfunc) and their conservative and non-conservative mutations selected with BLOSUM62. The phenotype was verified using an outer membrane proteome analysis (OMP isolation, 2-DE electrophoresis, and MS protein identification). RESULTS: the variety of genetic and phenotypic changes in E. coli strains depends on the type of silver used for bacteria treatment. The most changes were identified in E. coli ATCC 11229 treated with silver nanoformulation signed as S2 (E. coli ATCC 11229 var. S2). We pinpointed 39 genes encoding proteins located in the outer membrane, 40 genes of their regulators, and 22 genes related to other outer membrane structures, such as flagellum, fimbria, lipopolysaccharide (LPS), or exopolysaccharide in this strain. Optical density of OmpC protein in E. coli electropherograms decreased after exposure to silver nanoformulation S7 (noticed in E. coli ATCC 11229 var. S7), and increased after treatment with the other silver nanoformulations (SNF) marked as S2 (noticed in E. coli ATCC 11229 var. S2). Increase of FliC protein optical density was identified in turn after Ag+ treatment (noticed in E.coli AgR). CONCLUSION: the results show that silver nanoformulations (SNF) exerts a selective pressure on bacteria causing both conservative and non-conservative mutations. The proteomic approach revealed that the levels of some proteins have changed after treatment with appropriate SNF.

2.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299005

RESUMEN

Nanoparticles can interact with the complement system and modulate the inflammatory response. The effect of these interactions on the complement activity strongly depends on physicochemical properties of nanoparticles. The interactions of silver nanoparticles with serum proteins (particularly with the complement system components) have the potential to significantly affect the antibacterial activity of serum, with serious implications for human health. The aim of the study was to assess the influence of graphite oxide (GO) nanocomposites (GO, GO-PcZr(Lys)2-Ag, GO-Ag, GO-PcZr(Lys)2) on the antibacterial activity of normal human serum (NHS), serum activity against bacteria isolated from alveoli treated with nanocomposites, and nanocomposite sensitivity of bacteria exposed to serum in vitro (using normal human serum). Additionally, the in vivo cytotoxic effect of the GO compounds was determined with application of a Galleria mellonella larvae model. GO-PcZr(Lys)2, without IR irradiation enhance the antimicrobial efficacy of the human serum. IR irradiation enhances bactericidal activity of serum in the case of the GO-PcZr(Lys)2-Ag sample. Bacteria exposed to nanocomposites become more sensitive to the action of serum. Bacteria exposed to serum become more sensitive to the GO-Ag sample. None of the tested GO nanocomposites displayed a cytotoxicity towards larvae.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos/farmacología , Grafito/química , Nanopartículas del Metal/química , Nanocompuestos/química , Óxidos/química , Suero/efectos de los fármacos , Animales , Antibacterianos/química , Antiinfecciosos/química , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/efectos de la radiación , Humanos , Rayos Infrarrojos , Larva/efectos de los fármacos , Larva/efectos de la radiación , Lepidópteros/efectos de los fármacos , Lepidópteros/efectos de la radiación , Nanopartículas del Metal/administración & dosificación , Nanocompuestos/administración & dosificación , Suero/microbiología , Plata/química
3.
Antibiotics (Basel) ; 9(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722499

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a prevalent nosocomial pathogen, causing a wide range of diseases. The increased frequency of MRSA isolates in hospitals and the emergence of vancomycin resistance have sparked the search for new control strategies. This study aimed to characterize sixty-seven MRSA isolates collected from both infected patients and asymptomatic carriers in a Spanish hospital. RAPD-PCR allowed the identification of six genetic patterns. We also investigated the presence of genes involved in producing adhesins, toxins and the capsule; the biofilm; and antimicrobial resistance. A notable percentage of the isolates carried virulence genes and showed medium-high ability to form biofilms. Next, we assessed the strains' susceptibility to two phages (phiIPLA-C1C and phiIPLA-RODI) and one endolysin (LysRODI). All strains were resistant to phiIPLA-C1C, and most (70.2%) were susceptible to phiIPLA-RODI. Regarding LysRODI, all strains displayed susceptibility, although to varying degrees. There was a correlation between endolysin susceptibility and the random amplification of polymorphic DNA (RAPD) profile or the presence of some virulence genes (fnbA, eta, etb, PVL and czr), but that was not observed with biofilm-forming ability, strain origin or phage sensitivity. Taken together, these findings can help to explain the factors influencing endolysin effectiveness, which will contribute to the development of efficient therapies targeting MRSA infections.

4.
Front Microbiol ; 11: 1356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636826

RESUMEN

We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.

5.
J Inorg Biochem ; 210: 111124, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32534287

RESUMEN

Biological activity against reference and multi-drug resistant (MDR) clinical strains of fluoroquinolones (FQs): ciprofloxacin (HCp), norfloxacin (HNr), lomefloxacin (HLm) and sparfloxacin (HSf), phosphine ligands derived from those antibiotics and 14 phosphino copper(I) and copper(II) complexes with 2,9-dimethyl-1,10-phenanthroline, 1,10-phenanthroline or 2,2'-biquinoline have been determined. Almost all phosphines showed excellent antibacterial activity relative to reference strains (S. aureus ATCC 6538, E. coli ATCC 25922, K. pneumoniae ATCC 4352, and P. aeruginosa ATCC 27853). In rare cases P. aeruginosa rods showed natural insensitivity to oxides, and their copper(II) complexes. Most of the studied compounds showed weak antibacterial activity against clinical multi-drug resistant strains (MDR P. aeruginosa 16, 46, 325, 355, MRD A. baumanii 483 and MDR S. aureus 177). However, phosphines Ph2PCH2Sf (PSf), Ph2PCH2Lm (PLm) and their copper(I) complexes were characterized by the best antibacterial activity. In addition, PSf compounds, in which the activities relative to P. aeruginosa MDRs were relatively diverse, paid particular attention in our studies. Genetic and phenotypic studies of these strains showed significant differences between the strains, indicating different profiles of FQs resistance mechanisms. This may prove that a change in the spatial conformation of the PSf derivatives relative to the native form of HSf increased its affinity for the target site of action in gyrase, leading to selective inhibition of the multiplication of MDR strains. In conclusion, differences in PSf activity within closely related P. aeruginosa strains may indicate its diagnostic and therapeutic potential.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Fluoroquinolonas/farmacología , Fosfinas/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Complejos de Coordinación/química , Cobre/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Fluoroquinolonas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fosfinas/química , Relación Estructura-Actividad
6.
Int J Nanomedicine ; 15: 199-213, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021174

RESUMEN

PURPOSE: Resistance to antibiotics is a major problem of public health. One of the alternative therapies is silver - more and more popular because of nanotechnology development and new possibilities of usage. As a component of colloid, powder, cream, bandages, etc., nanosilver is often recommended to treat the multidrug-resistant pathogens and we can observe its overuse also outside of the clinic where different physicochemical forms of silver nanoformulations (e.g. size, shape, compounds, surface area) are introduced. In this research, we described the consequences of long-term bacteria exposure to silver nanoformulations with different physicochemical properties, including changes in genome and changes of bacterial sensitivity to silver nanoformulations and/or antibiotics. Moreover, the prevalence of exogenous resistance to silver among multidrug-resistant bacteria was determined. MATERIALS AND METHODS: Gram-negative and Gram-positive bacteria strains are described as sensitive and multidrug-resistant strains. The sensitivity of the tested bacterial strains to antibiotics was carried out with disc diffusion methods. The sensitivity of bacteria to silver nanoformulations and development of bacterial resistance to silver nanoformulations has been verified via determination of the minimal inhibitory concentrations. The presence of sil genes was verified via PCR reaction and DNA electrophoresis. The genomic and phenotypic changes have been verified via genome sequencing and bioinformatics analysis. RESULTS: Bacteria after long-term exposure to silver nanoformulations may change their sensitivity to silver forms and/or antibiotics, depending on the physicochemical properties of silver nanoformulations, resulting from phenotypic or genetic changes in the bacterial cell. Finally, adaptants and mutants may become more sensitive or resistant to some antibiotics than wild types. CONCLUSION: Application of silver nanoformulations in the case of multiple resistance or multidrug-resistant bacterial infection can enhance or decrease their resistance to antibiotics. The usage of nanosilver in a clinic and outside of the clinic should be determined and should be under strong control. Moreover, each silver nanomaterial should be considered as a separate agent with a potential different mode of antibacterial action.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanoestructuras/química , Plata/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Pruebas de Sensibilidad Microbiana , Plata/química
7.
J Inorg Biochem ; 189: 69-80, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30243120

RESUMEN

Fusobacterium nucleatum is an anaerobic, Gram-negative bacteria linked to colon cancer. It is interesting to determine how metal ions interact with bacterial adhesin proteins. To this end, the coordination of ATDAAS-NH2 and MKKFL-NH2 fragments of Fusobacterium adhesin A (FadA) to copper(II) ions was studied by potentiometry, spectroscopic techniques (UV-Vis, CD, EPR and NMR) and the density functional theory (DFT) methods. At pH 6.8 (colon physiological pH), the metal ion in the first peptide (ATDAAS-NH2) is coordinated by one oxygen and three nitrogen donors while in the second one (MKKFL-NH2) - by sulfur and three nitrogen atoms. Both complexes form two five- and one six-membered stable chelate rings. Moreover, reactivity studies confirmed the production of reactive oxygen species such as hydroxyl radical, superoxide anion radical and singlet oxygen. Generation of reactive oxygen species (ROS) was observed during gel electrophoresis and spectroscopic assays with reporting molecules like NDMA (N,N-dimethyl-p-nitrosoaniline) and NBT (Nitrotetrazolium Blue Chloride). All reactions were conducted in the presence of hydrogen peroxide as endogenous oxidant.


Asunto(s)
Adhesinas Bacterianas/química , Cobre/química , Fusobacterium nucleatum/química , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Potenciometría , Especies Reactivas de Oxígeno/química , Superóxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA