Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 247: 113698, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36791558

RESUMEN

We have simulated the magnetic Bragg scattering in transmission electron microscopy in two antiferromagnetic compounds, NiO and LaMnAsO. This weak magnetic phenomenon was experimentally observed in NiO by Loudon (2012). We have computationally reproduced Loudon's experimental data, and for comparison we have performed calculations for the LaMnAsO compound as a more challenging case, containing lower concentration of magnetic elements and strongly scattering heavier non-magnetic elements. We have also described thickness and voltage dependence of the intensity of the antiferromagnetic Bragg spot for both compounds. We have considered lattice vibrations within two computational approaches, one assuming a static lattice with Debye-Waller smeared potentials, and another explicitly considering the atomic vibrations within the quantum excitations of phonons model (thermal diffuse scattering). The structural analysis shows that the antiferromagnetic Bragg spot appears in between (111) and (000) reflections for NiO, while for LaMnAsO the antiferromagnetic Bragg spot appears at the position of the (010) reflection in the diffraction pattern, which corresponds to a forbidden reflection of the crystal structure. Calculations predict that the intensity of the magnetic Bragg spot in NiO is significantly stronger than thermal diffuse scattering at room temperature. For LaMnAsO, the magnetic Bragg spot is weaker than the room-temperature thermal diffuse scattering, but its detection can be facilitated at reduced temperatures.

2.
Inorg Chem ; 57(2): 777-784, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29298054

RESUMEN

The substitutional effects of cobalt in (Fe1-xCox)5PB2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe1-xCox)5PB2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (TC) with increasing cobalt content, from 622 to 152 K for Fe5PB2 and (Fe0.3Co0.7)5PB2, respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune TC to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

3.
Sci Rep ; 7: 44802, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338011

RESUMEN

While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA