Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 14(1): 489, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177192

RESUMEN

N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.


Asunto(s)
Procesamiento Proteico-Postraduccional , Sarcoma , Masculino , Femenino , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Glicosilación , Polisacáridos/metabolismo
2.
Acta Biomater ; 175: 279-292, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160856

RESUMEN

Mucosal vaccinations for respiratory pathogens provide effective protection as they stimulate localized cellular and humoral immunities at the site of infection. Currently, the major limitation of intranasal vaccination is using effective adjuvants capable of withstanding the harsh environment imposed by the mucosa. Herein, we describe the efficacy of using a unique biopolymer, N-dihydrogalactochitosan (GC), as a nasal mucosal vaccine adjuvant against respiratory infections. Specifically, we mixed GC with recombinant SARS-CoV-2 trimeric spike (S) and nucleocapsid (NC) proteins to intranasally vaccinate K18-hACE2 transgenic mice, in comparison with Addavax (AV), an MF-59 equivalent. In contrast to AV, intranasal application of GC induces a robust, systemic antigen-specific antibody response and increases the number of T cells in the cervical lymph nodes. Moreover, GC+S+NC-vaccinated animals were largely resistant to the lethal SARS-CoV-2 challenge and experienced drastically reduced morbidity and mortality, with animal weights and behavior returning to normal 22 days post-infection. In contrast, animals intranasally vaccinated with AV+S+NC experienced severe weight loss, mortality, and respiratory distress, with none surviving beyond 6 days post-infection. Our findings demonstrate that GC can serve as a potent mucosal vaccine adjuvant against SARS-CoV-2 and potentially other respiratory viruses. STATEMENT OF SIGNIFICANCE: We demonstrated that a unique biopolymer, N-dihydrogalactochitosan (GC), was an effective nasal mucosal vaccine adjuvant against respiratory infections. Specifically, we mixed GC with recombinant SARS-CoV-2 trimeric spike (S) and nucleocapsid (NC) proteins to intranasally vaccinate K18-hACE2 transgenic mice, in comparison with Addavax (AV). In contrast to AV, GC induces a robust, systemic antigen-specific antibody response and increases the number of T cells in the cervical lymph nodes. About 90 % of the GC+S+NC-vaccinated animals survived the lethal SARS-CoV-2 challenge and remained healthy 22 days post-infection, while the AV+S+NC-vaccinated animals experienced severe weight loss and respiratory distress, and all died within 6 days post-infection. Our findings demonstrate that GC is a potent mucosal vaccine adjuvant against SARS-CoV-2 and potentially other respiratory viruses.


Asunto(s)
Acetilglucosamina/análogos & derivados , Vacunas contra la Influenza , Melfalán , Polisorbatos , Síndrome de Dificultad Respiratoria , Infecciones del Sistema Respiratorio , Escualeno , gammaglobulinas , Ratones , Animales , Proteínas Virales , Adyuvantes de Vacunas , Anticuerpos Antivirales , Adyuvantes Inmunológicos/farmacología , Proteínas Recombinantes/farmacología , Infecciones del Sistema Respiratorio/prevención & control , Membrana Mucosa , Ratones Transgénicos , Biopolímeros , Pérdida de Peso
3.
Clin Transl Med ; 12(7): e937, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35808806

RESUMEN

BACKGROUND: Metastatic breast cancer poses great challenge in cancer treatment. N-dihydrogalactochitosan (GC) is a novel immunoadjuvant that stimulates systemic immune responses when administered intratumourally following local tumour ablation. A combination of photothermal therapy (PTT) and GC, referred to as localized ablative immunotherapy (LAIT), extended animal survival and generates an activated B cell phenotype in MMTV-PyMT mouse mammary tumour microenvironment (TME). However, how T cell populations respond to LAIT remains to be elucidated. METHODS: Using depletion antibodies, we studied the contributions of CD8+ and CD4+ T cells to the therapeutic effect of LAIT. Using single-cell RNA-sequencing (scRNAseq), we analysed tumour-infiltrating T cell heterogeneity and dissected their transcriptomes upon treatments of PTT, GC, and LAIT (PTT+GC). RESULTS: Loss of CD8+ T cells after LAIT abrogated the therapeutic benefits of LAIT. Ten days after treatment, proportions of CD8+ and CD4+ T cells in untreated TME were 19.2% and 23.0%, respectively. Upon LAIT, both proportions were increased to 25.5% and 36.2%, respectively. In particular, LAIT increased the proportions of naïve and memory cells from a resting state to an activated state. LAIT consistently induced the expression of co-stimulatory molecules, type I IFN responsive genes, and a series of antitumor cytokines, Ifng, Tnf, Il1, and Il17 in CD8+ and CD4+ T cells. LAIT also induced immune checkpoints Pdcd1, Ctla4, and Lag3 expression, consistent with T cell activation. Relevant to clinical translation, LAIT also upregulated genes in CD8+ and CD4+ T cells that positively correlated with extended survival of breast cancer patients. CONCLUSIONS: Overall, our results reveal that LAIT prompts immunological remodelling of T cells by inducing broad proinflammatory responses and inhibiting suppressive signalling to drive antitumour immunity.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Acetilglucosamina/análogos & derivados , Adyuvantes Inmunológicos/farmacología , Animales , Ratones , Análisis de Secuencia de ARN , Microambiente Tumoral
4.
Methods Mol Biol ; 2271: 303-316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33908016

RESUMEN

The analysis of N-glycan distributions in formalin-fixed, paraffin-embedded (FFPE) tissues by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is an effective approach for characterization of many disease states. As the workflow has matured and new technology emerged, approaches are needed to more efficiently characterize the isomeric structures of these N-glycans to expand on the specificity of their localization within tissue. Sialic acid chemical derivatization can be used to determine the isomeric linkage (α2,3 or α2,6) of sialic acids attached to N-glycans, while endoglycosidase F3 (Endo F3) can be enzymatically applied to preferentially release α1,6-linked core fucosylated glycans, further describing the linkage of fucose on N-glycans. Here we describe workflows where N-glycans are chemically derivatized to reveal sialic acid isomeric linkages, combined with a dual-enzymatic approach of endoglycosidase F3 and PNGase F to further elucidate fucosylation isomers on the same tissue section.


Asunto(s)
Fijadores/química , Formaldehído/química , Glicoproteínas/análisis , Glicósido Hidrolasas/metabolismo , Adhesión en Parafina , Polisacáridos/análisis , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fijación del Tejido , Animales , Conformación de Carbohidratos , Glicosilación , Humanos , Isomerismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proyectos de Investigación , Especificidad por Sustrato , Flujo de Trabajo
5.
Mol Cell Proteomics ; 20: 100012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581409

RESUMEN

The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polisacáridos/metabolismo , Humanos , Inmunohistoquímica , Espectrometría de Masas , Páncreas/metabolismo
6.
J Mol Cell Cardiol ; 154: 6-20, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33516683

RESUMEN

Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Glicómica , Glicoproteínas/metabolismo , Estenosis de la Válvula Aórtica/congénito , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/fisiopatología , Biomarcadores , Niño , Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Glicómica/métodos , Glicosilación , Humanos , Imagen Molecular , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
J Proteome Res ; 19(8): 2989-2996, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441096

RESUMEN

Specific alterations in N-linked glycans, such as core fucosylation, are associated with many cancers and other disease states. Because of the many possible anomeric linkages associated with fucosylated N-glycans, determination of specific anomeric linkages and the site of fucosylation (i.e., core vs outer arm) can be difficult to elucidate. A new MALDI mass spectrometry imaging workflow in formalin-fixed clinical tissues is described using recombinant endoglycosidase F3 (Endo F3), an enzyme with a specific preference for cleaving core-fucosylated N-glycans attached to glycoproteins. In contrast to the broader substrate enzyme peptide-N-glycosidase F (PNGaseF), Endo F3 cleaves between the two core N-acetylglucosamine residues at the protein attachment site. On tissues, this results in a mass shift of 349.137 a.m.u. for core-fucosylated N-glycans when compared to N-glycans released with standard PNGaseF. Endo F3 can be used singly and in combination with PNGaseF digestion of the same tissue sections. Initial results in liver and prostate tissues indicate core-fucosylated glycans associated to specific tissue regions while still demonstrating a diverse mix of core- and outer arm-fucosylated glycans throughout all regions of tissue. By determining these specific linkages while preserving localization, more targeted diagnostic biomarkers for disease states are possible without the need for microdissection or solubilization of the tissue.


Asunto(s)
Acetilglucosamina , Polisacáridos , Glicosilación , Humanos , Masculino , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
J Mass Spectrom ; 55(4): e4490, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31860772

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) presents challenges to clinical management because of late-stage detection, treatment resistance, and frequent disease recurrence. Metabolically, ccRCC has a well-described Warburg effect utilization of glucose, but how this affects complex carbohydrate synthesis and alterations to protein and cell surface glycosylation is poorly defined. Using an imaging mass spectrometry approach, N-glycosylation patterns and compositional differences were assessed between tumor and nontumor regions of formalin-fixed clinical ccRCC specimens and tissue microarrays. Regions of normal kidney tissue samples were also evaluated for N-linked glycan-based distinctions between cortex, medullar, glomeruli, and proximal tubule features. Most notable was the proximal tubule localized detection of abundant multiantennary N-glycans with bisecting N-acetylglucosamine and multziple fucose residues. These glycans are absent in ccRCC tissues, while multiple tumor-specific N-glycans were detected with tri- and tetra-antennary structures and varying levels of fucosylation and sialylation. A polycystic kidney disease tissue was also characterized for N-glycan composition, with specific nonfucosylated glycans detected in the cyst fluid regions. Complementary to the imaging mass spectrometry analyses was an assessment of transcriptomic gene array data focused on the fucosyltransferase gene family and other glycosyltransferase genes. The transcript levels of the FUT3 and FUT6 genes responsible for the enzymes that add fucose to N-glycan antennae were significantly decreased in all ccRCC tissues relative to matching nontumor tissues. These striking differences in glycosylation associated with ccRCC could lead to new mechanistic insight into the glycobiology underpinning kidney malignancies and suggest the potential for new therapeutic interventions and diagnostic markers.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Riñón/metabolismo , Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Carcinoma de Células Renales/química , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/genética , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicómica/métodos , Glicosilación , Humanos , Riñón/química , Riñón/diagnóstico por imagen , Neoplasias Renales/química , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/genética , Enfermedades Renales Poliquísticas/diagnóstico por imagen , Enfermedades Renales Poliquísticas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Análisis de Matrices Tisulares
9.
Anal Chem ; 91(13): 8429-8435, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177770

RESUMEN

A new platform for N-glycoprotein analysis from serum that combines matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) workflows with antibody slide arrays is described. Antibody panel based (APB) N-glycan imaging allows for the specific capture of N-glycoproteins by antibodies on glass slides and N-glycan analysis in a protein-specific and multiplexed manner. Development of this technique has focused on characterizing two abundant and well-studied human serum glycoproteins, alpha-1-antitrypsin and immunoglobulin G. Using purified standard solutions and 1 µL samples of human serum, both glycoproteins can be immunocaptured and followed by enzymatic release of N-glycans. N-Glycans are detected with a MALDI FT-ICR mass spectrometer in a concentration-dependent manner while maintaining specificity of capture. Importantly, the N-glycans detected via slide-based antibody capture were identical to that of direct analysis of the spotted standards. As a proof of concept, this workflow was applied to patient serum samples from individuals with liver cirrhosis to accurately detect a characteristic increase in an IgG N-glycan. This novel approach to protein-specific N-glycan analysis from an antibody panel can be further expanded to include any glycoprotein for which a validated antibody exists. Additionally, this platform can be adapted for analysis of any biofluid or biological sample that can be analyzed by antibody arrays.


Asunto(s)
Biomarcadores/metabolismo , Glicómica/métodos , Glicoproteínas/metabolismo , Cirrosis Hepática/diagnóstico , Imagen Óptica/métodos , Polisacáridos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estudios de Casos y Controles , Glicoproteínas/química , Glicosilación , Humanos , Cirrosis Hepática/metabolismo , Polisacáridos/química
10.
Nanomedicine ; 18: 44-53, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844573

RESUMEN

Metastasis is the major cause of cancer-death. Checkpoint inhibition shows great promise as an immunotherapeutic treatment for cancer patients. However, most currently available checkpoint inhibitors have low response rates. To augment the antitumor efficacy of checkpoint inhibitors, such as CTLA-4 antibodies, a single-walled carbon nanotube (SWNT) modified by a novel immunoadjuvant, glycated chitosan (GC), was used for the treatment of metastatic mammary tumors in mice. We treated the primary tumors by intratumoral administration of SWNT-GC, followed with irradiation with a 1064-nm laser to achieve local ablation through photothermal therapy (PTT). The treatment induced a systemic antitumor immunity which inhibited lung metastasis and prolonged the animal survival time of treated. Combining SWNT-GC-laser treatment with anti-CTLA-4 produced synergistic immunomodulatory effects and further extended the survival time of the treated mice. The results showed that the special combination, PTT + SWNT-GC + anti-CTLA, could effectively suppress primary tumors and inhibit metastases, providing a new treatment strategy for metastatic cancers.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Inmunoterapia , Nanotubos de Carbono/química , Fototerapia , Animales , Apoptosis , Línea Celular Tumoral , Quitosano/química , Femenino , Humanos , Inmunidad , Ratones Endogámicos BALB C , Nanotubos de Carbono/ultraestructura , Metástasis de la Neoplasia
11.
J BioX Res ; 2(4): 159-168, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33088609

RESUMEN

Phototherapies offer promising alternatives to traditional cancer therapies. Phototherapies mainly rely on manipulation of target tissue through photothermal, photochemical, or photomechanical interactions. Combining phototherapy with immunotherapy has the benefit of eliciting a systemic immune response. Specifically, photothermal therapy (PTT) has been shown to induce apoptosis and necrosis in cancer cells, releasing tumor associated antigenic peptides while sparing healthy host cells, through temperature increase in targeted tissue. However, the tissue temperature must be monitored and controlled to minimize adverse thermal effects on normal tissue and to avoid the destruction of tumor-specific antigens, in order to achieve the desired therapeutic effects of PTT. Techniques for monitoring PTT have evolved from post-treatment quantification methods like enzyme linked immunosorbent assay, western blot analysis, and flow cytometry to modern methods capable of real-time monitoring, such as magnetic resonance thermometry, computed tomography, and photoacoustic imaging. Monitoring methods are largely chosen based on the type of light delivery to the target tissue. Interstitial methods of thermometry, such as thermocouples and fiber-optic sensors, are able to monitor temperature of the local tumor environment. However, these methods can be challenging if the phototherapy itself is interstitially administered. Increasingly, non-invasive therapies call for non-invasive monitoring, which can be achieved through magnetic resonance thermometry, computed tomography, and photoacoustic imaging techniques. The purpose of this review is to introduce the feasible methods used to monitor tissue temperature during PTT. The descriptions of different techniques and the measurement examples can help the researchers and practitioners when using therapeutic PTT.

12.
Adv Exp Med Biol ; 1104: 59-76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484244

RESUMEN

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.


Asunto(s)
Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Distribución Tisular
13.
J Proteome Res ; 17(10): 3454-3462, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30110170

RESUMEN

Hepatocellular carcinoma (HCC) remains as the fifth most common cancer in the world and accounts for more than 700,000 deaths annually. Changes in serum glycosylation have long been associated with this cancer but the source of that material is unknown and direct glycan analysis of HCC tissues has been limited. Our laboratory previously developed a method of in situ tissue based N-linked glycan imaging that bypasses the need for microdissection and solubilization of tissue prior to analysis. We used this methodology in the analysis of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue with either adjacent untransformed or tissue from patients with liver cirrhosis but no cancer. Ten glycans were found significantly elevated in HCC tissues as compared to cirrhotic or adjacent tissue. These glycans fell into two major classes, those with increased levels of fucosylation and those with increased levels of branching with or without any fucose modifications. In addition, increased levels of fucosylated glycoforms were associated with a reduction in survival time. This work supports the hypothesis that the increased levels of fucosylated N-linked glycans in HCC serum are produced directly from the cancer tissue.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Polisacáridos/metabolismo , Adulto , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Femenino , Fucosa/metabolismo , Glicosilación , Histocitoquímica/métodos , Humanos , Estimación de Kaplan-Meier , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Polisacáridos/química , Análisis de Matrices Tisulares/métodos
14.
BMC Genomics ; 19(1): 178, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506469

RESUMEN

BACKGROUND: The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. RESULTS: The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. CONCLUSIONS: A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Lolium/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Triticum/genética , Secuencia de Aminoácidos , Biología Computacional , Bases de Datos Factuales , Genoma de Planta , Hordeum/metabolismo , Lolium/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Familia de Multigenes , Filogenia , Alineación de Secuencia , Triticum/metabolismo
15.
Int J Hyperthermia ; 34(6): 756-763, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28826269

RESUMEN

BACKGROUND: Temperature increase in tumour tissue during photothermal therapy (PTT) is a significant factor in determining the outcomes of the treatment. Therefore, controlling and optimising temperature distribution in target tissue is crucial for PTT. In this study, we developed a unique ex vivo device to study the temperature distribution during PTT to be used as a guide for the desired photothermal effects for cancer treatment. METHODS: Bovine liver tissue buried inside agarose gel served as a phantom tumour surrounded by normal tissue. A thermostatic incubator was used to simulate tissue environment in live animals. The temperature distributions were measured by thermocouples with needle probes at different locations inside the target tissue, during laser irradiation using an 805-nm laser. RESULTS: The results obtained using the ex vivo device were verified by comparing the tissue temperature directly measured in animal tumours irradiated under the same conditions. With this model, the spatial distribution of temperature in target tissue can be monitored in real time. A two-dimensional temperature distribution in target tissue allows us to establish the correlations among laser parameters, temperature distribution and tumour size. In addition, the optimal temperature range for tumour destruction and immunological stimulation was determined using metastatic rat mammary tumour model. CONCLUSION: The device and method developed in this study can provide guidance for choosing the appropriate treatment parameters for optimal photothermal effects, particularly when combined with immunotherapy, for cancer treatment.


Asunto(s)
Tumor de Células de Leydig/radioterapia , Fototerapia/métodos , Animales , Humanos , Tumor de Células de Leydig/patología , Ratas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA