Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microlife ; 5: uqae015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205678

RESUMEN

The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by Streptomyces. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant Streptomyces venezuelae with the apramycin-producing strain Streptoalloteichus tenebrarius. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.

2.
Cell Mol Life Sci ; 81(1): 368, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179905

RESUMEN

Cockayne Syndrome B (CSB) is a hereditary multiorgan syndrome which-through largely unknown mechanisms-can affect the brain where it clinically presents with microcephaly, intellectual disability and demyelination. Using human induced pluripotent stem cell (hiPSC)-derived neural 3D models generated from CSB patient-derived and isogenic control lines, we here provide explanations for these three major neuropathological phenotypes. In our models, CSB deficiency is associated with (i) impaired cellular migration due to defective autophagy as an explanation for clinical microcephaly; (ii) altered neuronal network functionality and neurotransmitter GABA levels, which is suggestive of a disturbed GABA switch that likely impairs brain circuit formation and ultimately causes intellectual disability; and (iii) impaired oligodendrocyte maturation as a possible cause of the demyelination observed in children with CSB. Of note, the impaired migration and oligodendrocyte maturation could both be partially rescued by pharmacological HDAC inhibition.


Asunto(s)
Síndrome de Cockayne , Células Madre Pluripotentes Inducidas , Oligodendroglía , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Movimiento Celular , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Neuronas/metabolismo , Neuronas/patología , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Ácido gamma-Aminobutírico/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Microcefalia/patología , Microcefalia/metabolismo , Microcefalia/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Diferenciación Celular
3.
New Phytol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187924

RESUMEN

The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.

4.
Methods Mol Biol ; 2792: 187-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861088

RESUMEN

Photorespiration is an essential process of phototropic organisms caused by the limited ability of rubisco to distinguish between CO2 and O2. To understand the metabolic flux through the photorespiratory pathway, we combined a mass spectrometry-based approach with a shift experiment from elevated CO2 (3000 ppm) to ambient CO2 (390 ppm). Here, we describe a protocol for quantifying photorespiratory intermediates, starting from plant cultivation through extraction and evaluation.


Asunto(s)
Dióxido de Carbono , Espectrometría de Masas , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Espectrometría de Masas/métodos , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Oxígeno/metabolismo , Oxígeno/análisis , Hojas de la Planta/metabolismo
5.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594609

RESUMEN

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Asunto(s)
Arabidopsis , Oryza , Genes de Plantas , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Azufre/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Raíces de Plantas/metabolismo
6.
Cell Host Microbe ; 32(4): 543-556.e6, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479394

RESUMEN

Plant roots are functionally heterogeneous in cellular architecture, transcriptome profile, metabolic state, and microbial immunity. We hypothesized that axial differentiation may also impact spatial colonization by root microbiota along the root axis. We developed two growth systems, ArtSoil and CD-Rhizotron, to grow and then dissect Arabidopsis thaliana roots into three segments. We demonstrate that distinct endospheric and rhizosphere bacterial communities colonize the segments, supporting the hypothesis of microbiota differentiation along the axis. Root metabolite profiling of each segment reveals differential metabolite enrichment and specificity. Bioinformatic analyses and GUS histochemistry indicate microbe-induced accumulation of SWEET2, 4, and 12 sugar uniporters. Profiling of root segments from sweet mutants shows altered spatial metabolic profiles and reorganization of endospheric root microbiota. This work reveals the interdependency between root metabolites and microbial colonization and the contribution of SWEETs to spatial diversity and stability of microbial ecosystem.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/microbiología , Bacterias/metabolismo , Rizosfera , Azúcares/metabolismo , Raíces de Plantas/microbiología , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
FEBS J ; 291(4): 705-721, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37943159

RESUMEN

Phosphatidic acid (PA) is the precursor of most phospholipids like phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. In bacteria, its biosynthesis begins with the acylation of glycerol-3-phosphate to lysophosphatidic acid (LPA), which is further acylated to PA by the PlsC enzyme. Some bacteria, like the plant pathogen Xanthomonas campestris, use a similar pathway to acylate lysophosphatidylcholine to phosphatidylcholine (PC). Previous studies assigned two acyltransferases to PC formation. Here, we set out to study their activity and found a second much more prominent function of these enzymes in LPA to PA conversion. This PlsC-like activity was supported by the functional complementation of a temperature-sensitive plsC-deficient Escherichia coli strain. Biocomputational analysis revealed two further PlsC homologs in X. campestris. The cellular levels of the four PlsC-like proteins varied with respect to growth phase and growth temperature. To address the question whether these enzymes have redundant or specific functions, we purified two recombinant, detergent-solubilized enzymes in their active form, which enabled the first direct biochemical comparison of PlsC isoenzymes from the same organism. Overlapping but not identical acyl acceptor and acyl donor preferences suggest redundant and specialized functions of the X. campestris PlsC enzymes. The altered fatty acid composition in plsC mutant strains further supports the functional differentiation of these enzymes.


Asunto(s)
Xanthomonas campestris , Xanthomonas campestris/genética , Aciltransferasas/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos
8.
J Exp Bot ; 75(6): 1696-1713, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38158893

RESUMEN

Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.


Asunto(s)
Metabolómica , Fotosíntesis , Biomasa , Carbono , Cambio Climático
9.
Nat Commun ; 14(1): 8329, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097610

RESUMEN

Red blood cells (RBC) are the major carriers of sphingosine-1-phosphate (S1P) in blood. Here we show that variations in RBC S1P content achieved by altering S1P synthesis and transport by genetic and pharmacological means regulate glucose uptake and metabolic flux. This is due to S1P-mediated activation of the catalytic protein phosphatase 2 (PP2A) subunit leading to reduction of cell-surface glucose transporters (GLUTs). The mechanism dynamically responds to metabolic cues from the environment by increasing S1P synthesis, enhancing PP2A activity, reducing GLUT phosphorylation and localization, and diminishing glucose uptake in RBC from diabetic mice and humans. Functionally, it protects RBC against lipid peroxidation in hyperglycemia and diabetes by activating the pentose phosphate pathway. Proof of concept is provided by the resistance of mice lacking the S1P exporter MFSD2B to diabetes-induced HbA1c elevation and thiobarbituric acid reactive substances (TBARS) generation in diabetic RBC. This mechanism responds to pharmacological S1P analogues such as fingolimod and may be functional in other insulin-independent tissues making it a promising therapeutic target.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Humanos , Ratones , Animales , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Eritrocitos/metabolismo , Hiperglucemia/metabolismo , Esfingosina , Lisofosfolípidos/metabolismo , Glucosa/metabolismo
10.
J Exp Bot ; 74(21): 6631-6649, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37392176

RESUMEN

Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.


Asunto(s)
Brassicaceae , Carbono , Filogenia , Carbono/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Glicina/genética , Glicina/metabolismo , Hojas de la Planta/metabolismo
11.
Front Plant Sci ; 14: 1024981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324717

RESUMEN

Cyanobacteria are a promising platform for the production of the triterpene squalene (C30), a precursor for all plant and animal sterols, and a highly attractive intermediate towards triterpenoids, a large group of secondary plant metabolites. Synechocystis sp. PCC 6803 natively produces squalene from CO2 through the MEP pathway. Based on the predictions of a constraint-based metabolic model, we took a systematic overexpression approach to quantify native Synechocystis gene's impact on squalene production in a squalene-hopene cyclase gene knock-out strain (Δshc). Our in silico analysis revealed an increased flux through the Calvin-Benson-Bassham cycle in the Δshc mutant compared to the wildtype, including the pentose phosphate pathway, as well as lower glycolysis, while the tricarboxylic acid cycle predicted to be downregulated. Further, all enzymes of the MEP pathway and terpenoid synthesis, as well as enzymes from the central carbon metabolism, Gap2, Tpi and PyrK, were predicted to positively contribute to squalene production upon their overexpression. Each identified target gene was integrated into the genome of Synechocystis Δshc under the control of the rhamnose-inducible promoter Prha. Squalene production was increased in an inducer concentration dependent manner through the overexpression of most predicted genes, which are genes of the MEP pathway, ispH, ispE, and idi, leading to the greatest improvements. Moreover, we were able to overexpress the native squalene synthase gene (sqs) in Synechocystis Δshc, which reached the highest production titer of 13.72 mg l-1 reported for squalene in Synechocystis sp. PCC 6803 so far, thereby providing a promising and sustainable platform for triterpene production.

13.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294632

RESUMEN

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
14.
Int J Vitam Nutr Res ; 93(2): 122-131, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34074127

RESUMEN

Carbon monoxide (CO) is endogenously produced upon degradation of heme by heme oxygenases (HOs) and is suggested to act as a gaseous signaling molecule. The expression of HO-1 is triggered by the Nrf2-Keap1 signaling pathway which responds to exogenous stress signals and dietary constituents such as flavonoids and glucosinolates or reactive metabolic intermediates like 4-hydroxynonenal. Endogenous CO affects energy metabolism, regulates the utilization of glucose and addresses CYP450 enzymes. Using the CO releasing molecule-401 (CORM-401), we studied the effect of endogenous CO on ATP synthesis, AMP-signaling and activation of the AMPK pathway in cell culture. Upon exposure of cells to CORM-401, the mitochondrial ATP production rate was significantly decreased (P=0.007) to about 50%, while glycolytic ATP synthesis was unchanged (P=0.489). Total ATP levels were less affected as determined by mass spectrometry. Instead, levels of ADP and AMP were elevated following CORM-401 exposure by about two- (P=0.022) and four-fold (P=0.012) compared to control, respectively. Increased concentrations of AMP activate AMPK which was demonstrated by a 10 to 15-fold increased phosphorylation of Thr172 of the α-subunit of AMPK (P=0.025). A downstream target of AMPK is the kinase ULK1 which triggers autophagic and mitophagic processes. Activation of ULK1 after CO exposure was proven by a 3 to 5-fold elevated phosphorylation of ULK1 at Ser555 (P=0.004). The present data suggest that production of endogenous CO leads to increasing amounts of AMP which mediates AMPK-dependent downstream effects and likely triggers autophagic processes. Since dietary constituents and their metabolites induce the expression of the CO producing enzyme HO-1, CO signaling may also be involved in the cellular response to nutritional factors.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Monóxido de Carbono , Ratones , Animales , Fosforilación , Monóxido de Carbono/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fibroblastos/metabolismo , Hemo/metabolismo , Adenosina Trifosfato/metabolismo
15.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35804936

RESUMEN

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma is the most common primary malignant brain tumor. It is associated with a particularly poor prognosis, as reflected by an overall median survival of only 15 months in patients who undergo a supramarginal surgical reduction of the tumor mass followed by combined chemoradiotherapy. The highly malignant nature of IDH-wildtype glioblastoma is thought to be driven by glioblastoma stem-like cells (GSCs) that harbor the ability of self-renewal, survival, and adaptability to challenging environmental conditions. The wingless (WNT) signaling pathway is a phylogenetically highly conserved stemness pathway, which promotes metabolic plasticity and adaptation to a nutrient-limited tumor microenvironment. To unravel the reciprocal regulation of the WNT pathway and the nutrient-limited microenvironment, glioblastoma cancer stem-like cells were cultured in a medium with either standard or reduced glucose concentrations for various time points (24, 48, and 72 h). Glucose depletion reduced cell viability and facilitated the survival of a small population of starvation-resistant tumor cells. The surviving cells demonstrated increased clonogenic and invasive properties as well as enhanced chemosensitivity to pharmacological inhibitors of the WNT pathway (LGK974, berberine). Glucose depletion partially led to the upregulation of WNT target genes such as CTNNB1, ZEB1, and AXIN2 at the mRNA and corresponding protein levels. LGK974 treatment alone or in combination with glucose depletion also altered the metabolite concentration in intracellular compartments, suggesting WNT-mediated metabolic regulation. Taken together, our findings suggest that WNT-mediated metabolic plasticity modulates the survival of GSCs under nutrient-restricted environmental conditions.

16.
BMC Genomics ; 23(1): 200, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279073

RESUMEN

BACKGROUND: Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as single predictors compared to a SNP array, where these omic datasets included different types of sequence variants (full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance when using SV, GE, and ePAV from simulated 3'end mRNA sequencing of different lengths as predictors. RESULTS: The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that of the single predictors alone. CONCLUSIONS: The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a cost-effective approach generating 3'end mRNA sequencing with transcriptome data extracted from seedling without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of such prediction methods in commercial breeding programs.


Asunto(s)
Hordeum , Genómica/métodos , Hordeum/genética , Modelos Genéticos , Fenotipo , Fitomejoramiento
17.
Cell Rep ; 37(1): 109797, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610315

RESUMEN

Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.


Asunto(s)
Metabolismo de los Lípidos , Transducción de Señal , Sinapsis/metabolismo , Amidohidrolasas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Endocannabinoides/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Proteoma/análisis , Proteómica/métodos , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Transducción de Señal/genética , Espectrometría de Masas en Tándem
18.
Metab Eng Commun ; 13: e00178, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34466381

RESUMEN

Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium Synechocystis sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of shc and sqs. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on crtE. Finally, we intended to increase the spatial proximity of the two enzymes, ispA and CnVS, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in Synechocystis. In this work, we have devised a useful platform for future engineering steps.

19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001608

RESUMEN

Plants depend on the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) for CO2 fixation. However, especially in C3 plants, photosynthetic yield is reduced by formation of 2-phosphoglycolate, a toxic oxygenation product of Rubisco, which needs to be recycled in a high-flux-demanding metabolic process called photorespiration. Canonical photorespiration dissipates energy and causes carbon and nitrogen losses. Reducing photorespiration through carbon-concentrating mechanisms, such as C4 photosynthesis, or bypassing photorespiration through metabolic engineering is expected to improve plant growth and yield. The ß-hydroxyaspartate cycle (BHAC) is a recently described microbial pathway that converts glyoxylate, a metabolite of plant photorespiration, into oxaloacetate in a highly efficient carbon-, nitrogen-, and energy-conserving manner. Here, we engineered a functional BHAC in plant peroxisomes to create a photorespiratory bypass that is independent of 3-phosphoglycerate regeneration or decarboxylation of photorespiratory precursors. While efficient oxaloacetate conversion in Arabidopsis thaliana still masks the full potential of the BHAC, nitrogen conservation and accumulation of signature C4 metabolites demonstrate the proof of principle, opening the door to engineering a photorespiration-dependent synthetic carbon-concentrating mechanism in C3 plants.

20.
J Proteome Res ; 20(6): 3114-3123, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33938762

RESUMEN

Phosphoinositides are minor components of cell membranes, but play crucial roles in numerous signal transduction pathways. To obtain quantitative measures of phosphoinositides, sensitive, accurate, and comprehensive methods are needed. Here, we present a quantitative targeted ion chromatography-mass spectrometry-based workflow that separates phosphoinositide isomers and increases the quantitative accuracy of measured phosphoinositides. Besides testing different analytical characteristics such as extraction and separation efficiency, the reproducibility of the developed workflow was also investigated. The workflow was verified in resting and stimulated human platelets, fat cells, and rat hippocampal brain tissue, where the LOD and LOQ for phosphoinositides were at 312.5 and 625 fmol, respectively. The robustness of the workflow is shown with different applications that confirms its suitability to analyze multiple less-abundant phosphoinositides.


Asunto(s)
Fosfatidilinositoles , Animales , Cromatografía Liquida , Espectrometría de Masas , Ratas , Reproducibilidad de los Resultados , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA