Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732936

RESUMEN

Lung diseases are the third-leading cause of mortality in the world. Due to compromised lung function, respiratory difficulties, and physiological complications, lung disease brought on by toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest X-ray images pose a challenge for classification due to their visual similarity, leading to confusion among radiologists. To imitate those issues, we created an automated system with a large data hub that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different disease classes. For combining various resources, our large datasets contain noise and annotations, class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The elastic deformation augmentation technique also generates a balanced dataset. Then, we developed DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable 99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward layers, the architecture is very flexible when it comes to working with graph data for accurate lung disease classification. This study highlights the significant impact of combining advanced research with clinical application potential in diagnosing lung diseases, providing an optimal framework for precise and efficient disease identification and classification.


Asunto(s)
Enfermedades Pulmonares , Redes Neurales de la Computación , Humanos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Algoritmos , Pulmón/diagnóstico por imagen , Pulmón/patología
2.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501973

RESUMEN

Smart cities can be complemented by fusing various components and incorporating recent emerging technologies. IoT communications are crucial to smart city operations, which are designed to support the concept of a "Smart City" by utilising the most cutting-edge communication technologies to enhance city administration and resident services. Smart cities have been outfitted with numerous IoT-based gadgets; the Internet of Things is a modular method to integrate various sensors with all ICT technologies. This paper provides an overview of smart cities' concepts, characteristics, and applications. We thoroughly investigate smart city applications, challenges, and possibilities with solutions in recent technological trends and perspectives, such as machine learning and blockchain. We discuss cloud and fog IoT ecosystems in the in capacity of IoT devices, architectures, and machine learning approaches. In addition we integrate security and privacy aspects, including blockchain applications, towards more trustworthy and resilient smart cities. We also highlight the concepts, characteristics, and applications of smart cities and provide a conceptual model of the smart city mega-events framework. Finally, we outline the impact of recent emerging technologies' implications on challenges, applications, and solutions for futuristic smart cities.


Asunto(s)
Cadena de Bloques , Ecosistema , Ciudades , Comunicación , Tecnología de la Información
3.
Comput Biol Med ; 139: 104961, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34741906

RESUMEN

Lung cancer, also known as pulmonary cancer, is one of the deadliest cancers, but yet curable if detected at the early stage. At present, the ambiguous features of the lung cancer nodule make the computer-aided automatic diagnosis a challenging task. To alleviate this, we present LungNet, a novel hybrid deep-convolutional neural network-based model, trained with CT scan and wearable sensor-based medical IoT (MIoT) data. LungNet consists of a unique 22-layers Convolutional Neural Network (CNN), which combines latent features that are learned from CT scan images and MIoT data to enhance the diagnostic accuracy of the system. Operated from a centralized server, the network has been trained with a balanced dataset having 525,000 images that can classify lung cancer into five classes with high accuracy (96.81%) and low false positive rate (3.35%), outperforming similar CNN-based classifiers. Moreover, it classifies the stage-1 and stage-2 lung cancers into 1A, 1B, 2A and 2B sub-classes with 91.6% accuracy and false positive rate of 7.25%. High predictive capability accompanied with sub-stage classification renders LungNet as a promising prospect in developing CNN-based automatic lung cancer diagnosis systems.


Asunto(s)
Neoplasias Pulmonares , Dispositivos Electrónicos Vestibles , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
4.
IEEE J Biomed Health Inform ; 24(12): 3564-3575, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32966223

RESUMEN

To slow down the spread of COVID-19, governments worldwide are trying to identify infected people, and contain the virus by enforcing isolation, and quarantine. However, it is difficult to trace people who came into contact with an infected person, which causes widespread community transmission, and mass infection. To address this problem, we develop an e-government Privacy-Preserving Mobile, and Fog computing framework entitled PPMF that can trace infected, and suspected cases nationwide. We use personal mobile devices with contact tracing app, and two types of stationary fog nodes, named Automatic Risk Checkers (ARC), and Suspected User Data Uploader Node (SUDUN), to trace community transmission alongside maintaining user data privacy. Each user's mobile device receives a Unique Encrypted Reference Code (UERC) when registering on the central application. The mobile device, and the central application both generate Rotational Unique Encrypted Reference Code (RUERC), which broadcasted using the Bluetooth Low Energy (BLE) technology. The ARCs are placed at the entry points of buildings, which can immediately detect if there are positive or suspected cases nearby. If any confirmed case is found, the ARCs broadcast pre-cautionary messages to nearby people without revealing the identity of the infected person. The SUDUNs are placed at the health centers that report test results to the central cloud application. The reported data is later used to map between infected, and suspected cases. Therefore, using our proposed PPMF framework, governments can let organizations continue their economic activities without complete lockdown.


Asunto(s)
COVID-19/transmisión , Privacidad , COVID-19/virología , Humanos , Aplicaciones Móviles , SARS-CoV-2/aislamiento & purificación
5.
ScientificWorldJournal ; 2014: 894362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032243

RESUMEN

Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Almacenamiento y Recuperación de la Información/normas , Internet/normas
6.
ScientificWorldJournal ; 2014: 459375, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24696645

RESUMEN

Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.


Asunto(s)
Algoritmos , Metodologías Computacionales , Toma de Decisiones Asistida por Computador , Técnicas de Apoyo para la Decisión , Almacenamiento y Recuperación de la Información/métodos , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA