Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Science ; 384(6698): eadh0559, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781390

RESUMEN

Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.


Asunto(s)
Corteza Cerebral , Neurogénesis , Organoides , Humanos , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Cromatina/metabolismo , Cromatina/genética , Aprendizaje Profundo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Neuronas/metabolismo , Organoides/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción
2.
Science ; 380(6643): eabm1696, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104607

RESUMEN

Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.


Asunto(s)
Sitios Genéticos , Neurogénesis , Animales , Humanos , Cromatina/genética , Genoma Humano , Genómica , Pan troglodytes/genética , Neurogénesis/genética , Aprendizaje Profundo
3.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824845

RESUMEN

Nucleotide changes in gene regulatory elements are important determinants of neuronal development and disease. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 sequences, including differentially accessible cell-type specific regions in the developing cortex and single-nucleotide variants associated with psychiatric disorders. In primary cells, we identified 46,802 active enhancer sequences and 164 disorder-associated variants that significantly alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning, we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.

4.
Neuron ; 111(6): 857-873.e8, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640767

RESUMEN

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.


Asunto(s)
Encéfalo , Elementos de Facilitación Genéticos , Pan troglodytes , Animales , Humanos , Cromatina , Aprendizaje Automático , Pan troglodytes/metabolismo , Factores de Transcripción/genética , Encéfalo/crecimiento & desarrollo
5.
Genome Biol ; 24(1): 16, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691074

RESUMEN

BACKGROUND: Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS: To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS: Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.


Asunto(s)
Cromatina , Lámina Nuclear , Humanos , Cromatina/metabolismo , Lámina Nuclear/genética , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Diferenciación Celular
7.
Annu Rev Genet ; 56: 423-439, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36070559

RESUMEN

Human accelerated regions (HARs) are the fastest-evolving sequences in the human genome. When HARs were discovered in 2006, their function was mysterious due to scant annotation of the noncoding genome. Diverse technologies, from transgenic animals to machine learning, have consistently shown that HARs function as gene regulatory enhancers with significant enrichment in neurodevelopment. It is now possible to quantitatively measure the enhancer activity of thousands of HARs in parallel and model how each nucleotide contributes to gene expression. These strategies have revealed that many human HAR sequences function differently than their chimpanzee orthologs, though individual nucleotide changes in the same HAR may have opposite effects, consistent with compensatory substitutions. To fully evaluate the role of HARs in human evolution, it will be necessary to experimentally and computationally dissect them across more cell types and developmental stages.


Asunto(s)
Genoma Humano , Nucleótidos , Animales , Humanos , Genoma Humano/genética , Animales Modificados Genéticamente
8.
Nat Rev Genet ; 23(3): 169-181, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837041

RESUMEN

The scale of genetic, epigenomic, transcriptomic, cheminformatic and proteomic data available today, coupled with easy-to-use machine learning (ML) toolkits, has propelled the application of supervised learning in genomics research. However, the assumptions behind the statistical models and performance evaluations in ML software frequently are not met in biological systems. In this Review, we illustrate the impact of several common pitfalls encountered when applying supervised ML in genomics. We explore how the structure of genomics data can bias performance evaluations and predictions. To address the challenges associated with applying cutting-edge ML methods to genomics, we describe solutions and appropriate use cases where ML modelling shows great potential.


Asunto(s)
Genómica/métodos , Aprendizaje Automático , Animales , Genómica/normas , Genómica/tendencias , Humanos , Aprendizaje Automático/normas , Modelos Estadísticos , Programas Informáticos
9.
Cell Rep ; 37(10): 110089, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879283

RESUMEN

Deleterious genetic variants in POGZ, which encodes the chromatin regulator Pogo Transposable Element with ZNF Domain protein, are strongly associated with autism spectrum disorder (ASD). Although it is a high-confidence ASD risk gene, the neurodevelopmental functions of POGZ remain unclear. Here we reveal the genomic binding of POGZ in the developing forebrain at euchromatic loci and gene regulatory elements (REs). We profile chromatin accessibility and gene expression in Pogz-/- mice and show that POGZ promotes the active chromatin state and transcription of clustered synaptic genes. We further demonstrate that POGZ forms a nuclear complex and co-occupies loci with ADNP, another high-confidence ASD risk gene, and provide evidence that POGZ regulates other neurodevelopmental disorder risk genes as well. Our results reveal a neurodevelopmental function of an ASD risk gene and identify molecular targets that may elucidate its function in ASD.


Asunto(s)
Trastorno Autístico/enzimología , Encéfalo/enzimología , Proteínas de Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/fisiología , Eucromatina/metabolismo , Sinapsis/enzimología , Transposasas/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Sitios de Unión , Encéfalo/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Eucromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Regiones Promotoras Genéticas , Sinapsis/genética , Transposasas/genética
11.
Nat Protoc ; 15(8): 2387-2412, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641802

RESUMEN

Massively parallel reporter assays (MPRAs) can simultaneously measure the function of thousands of candidate regulatory sequences (CRSs) in a quantitative manner. In this method, CRSs are cloned upstream of a minimal promoter and reporter gene, alongside a unique barcode, and introduced into cells. If the CRS is a functional regulatory element, it will lead to the transcription of the barcode sequence, which is measured via RNA sequencing and normalized for cellular integration via DNA sequencing of the barcode. This technology has been used to test thousands of sequences and their variants for regulatory activity, to decipher the regulatory code and its evolution, and to develop genetic switches. Lentivirus-based MPRA (lentiMPRA) produces 'in-genome' readouts and enables the use of this technique in hard-to-transfect cells. Here, we provide a detailed protocol for lentiMPRA, along with a user-friendly Nextflow-based computational pipeline-MPRAflow-for quantifying CRS activity from different MPRA designs. The lentiMPRA protocol takes ~2 months, which includes sequencing turnaround time and data processing with MPRAflow.


Asunto(s)
Lentivirus/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo , Secuencia de Bases
12.
Am J Cardiol ; 128: 191-195, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32650919

RESUMEN

Abnormal P-wave axis may reflect preclinical atrial dysfunction and has been associated with an increased risk of incident atrial fibrillation (AF) in the general population. Patients with diabetes mellitus (DM) have a higher prevalence of AF, but the association of abnormal P-wave axis and the risk of incident AF in those with diabetes has not been previously explored. For this analysis, we included 8,965 eligible participants from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. P-wave axis was automatically measured on study electrocardiogram and visually confirmed, with the normal range being between 0° and 75°. At baseline, 8% of the study population had an abnormal P-wave axis. During 43,856 person-years of follow-up, there were 145 cases of incident AF. Using multivariable-adjusted Cox proportional hazards models, participants with abnormal P-wave axis had an increased risk of incident AF (hazard ratio 2.65, 95% confidence interval 1.76 to 3.99, p < 0.0001). Findings were similar in prespecified subgroups, without evidence of effect modification. Both left- and right-axis deviation of the P-wave were associated with incident AF. Our results suggest that abnormal P-wave axis is associated with incident AF in those with DM and that this relation is conserved in prespecified subgroups. There may be utility in considering P-wave axis values from routine ECGs in these patients.


Asunto(s)
Fibrilación Atrial/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Atrios Cardíacos/fisiopatología , Anciano , Fibrilación Atrial/fisiopatología , Comorbilidad , Diabetes Mellitus Tipo 2/fisiopatología , Electrocardiografía , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo
13.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32610082

RESUMEN

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica/genética , Corteza Prefrontal/embriología , Telencéfalo/embriología , Animales , Trastorno Autístico/genética , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Eucromatina/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Ontología de Genes , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Ratones , Ratones Transgénicos , Motivos de Nucleótidos , Mutación Puntual , Corteza Prefrontal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Genome Biol ; 20(1): 167, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416467

RESUMEN

The CRISPR/Cas system is a highly specific genome editing tool capable of distinguishing alleles differing by even a single base pair. Target sites might carry genetic variations that are not distinguishable by sgRNA designing tools based on one reference genome. AlleleAnalyzer is an open-source software that incorporates single-nucleotide variants and short insertions and deletions to design sgRNAs for precisely editing 1 or multiple haplotypes of a sequenced genome, currently supporting 11 Cas proteins. It also leverages patterns of shared genetic variation to optimize sgRNA design for different human populations. AlleleAnalyzer is available at https://github.com/keoughkath/AlleleAnalyzer .


Asunto(s)
Alelos , ARN Guía de Kinetoplastida/genética , Programas Informáticos , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , Humanos , Polimorfismo Genético
16.
Science ; 364(6446): 1156-1162, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31221853

RESUMEN

Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and ß1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.


Asunto(s)
Antígeno CA-19-9/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/metabolismo , Enfermedad Aguda , Animales , Antígeno CA-19-9/inmunología , Carcinogénesis/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Enfermedad Crónica , Proteínas de la Matriz Extracelular/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Glicosilación , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/patología , Pancreatitis/patología
17.
Genome Res ; 29(3): 334-343, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617125

RESUMEN

Chromatin interactions and linkage disequilibrium (LD) are both pairwise measurements between genomic loci that show block patterns along mammalian chromosomes. Their values are generally high for sites that are nearby in the linear genome but abruptly drop across block boundaries. One function of chromatin boundaries is to insulate regulatory domains from one another. Since recombination is depressed within genes and between distal regulatory elements and their promoters, we hypothesized that LD and chromatin contact frequency might be correlated genome-wide with the boundaries of LD blocks and chromatin domains frequently coinciding. To comprehensively address this question, we compared chromatin contacts in 22 cell types to LD across billions of pairs of loci in the human genome. These computationally intensive analyses revealed that there is no concordance between LD and chromatin interactions, even at genomic distances below 25 kilobases (kb) where both tend to be high. At genomic distances where LD is approximately zero, chromatin interactions are frequent. While LD is somewhat elevated between distal regulatory elements and their promoters, LD block boundaries are depleted-not enriched-at chromatin boundaries. Finally, gene expression and ontology data suggest that chromatin contacts identify regulatory variants more reliably than do LD and genomic proximity. We conclude that the genomic architectures of genetic and physical interactions are independent, with important implications for gene regulatory evolution, interpretation of genetic association studies, and precision medicine.


Asunto(s)
Cromatina/genética , Desequilibrio de Ligamiento , Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
18.
J Virol ; 92(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142137

RESUMEN

The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation.IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription.


Asunto(s)
Cromatina/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Plásmidos/genética , Línea Celular , Núcleo Celular/genética , Núcleo Celular/virología , Cromatina/virología , Cromosomas Humanos/genética , Cromosomas Humanos/virología , Humanos , Células K562 , Origen de Réplica
19.
Nat Genet ; 49(6): 834-841, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28436984

RESUMEN

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10-8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Menarquia/genética , Neoplasias/genética , Pubertad/genética , Ribonucleoproteínas/genética , Adolescente , Factores de Edad , Índice de Masa Corporal , Proteínas de Unión al Calcio , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de Riesgo , Ubiquitina-Proteína Ligasas
20.
BMC Bioinformatics ; 18(Suppl 2): 63, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28251868

RESUMEN

BACKGROUND: Cluster heatmaps are commonly used in biology and related fields to reveal hierarchical clusters in data matrices. This visualization technique has high data density and reveal clusters better than unordered heatmaps alone. However, cluster heatmaps have known issues making them both time consuming to use and prone to error. We hypothesize that visualization techniques without the rigid grid constraint of cluster heatmaps will perform better at clustering-related tasks. RESULTS: We developed an approach to "unbox" the heatmap values and embed them directly in the hierarchical clustering results, allowing us to use standard hierarchical visualization techniques as alternatives to cluster heatmaps. We then tested our hypothesis by conducting a survey of 45 practitioners to determine how cluster heatmaps are used, prototyping alternatives to cluster heatmaps using pair analytics with a computational biologist, and evaluating those alternatives with hour-long interviews of 5 practitioners and an Amazon Mechanical Turk user study with approximately 200 participants. We found statistically significant performance differences for most clustering-related tasks, and in the number of perceived visual clusters. Visit git.io/vw0t3 for our results. CONCLUSIONS: The optimal technique varied by task. However, gapmaps were preferred by the interviewed practitioners and outperformed or performed as well as cluster heatmaps for clustering-related tasks. Gapmaps are similar to cluster heatmaps, but relax the heatmap grid constraints by introducing gaps between rows and/or columns that are not closely clustered. Based on these results, we recommend users adopt gapmaps as an alternative to cluster heatmaps.


Asunto(s)
Análisis por Conglomerados , Biología Computacional , Línea Celular Tumoral , Humanos , Células K562
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA