Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328072

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/fibrillar pTau, however, appears to vary depending on the animal model used. Our prior work suggested that antigen-specific memory CD8 T (" hi T") cells act upstream of Aß/pTau after brain injury. Here we examine whether hi T cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hi T mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. Our work is the first to identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD. Significance Statement: This study changes our view of Alzheimer's Disease (AD) initiation and progression. Mutations promoting cerebral beta-amyloid (Aß) deposition guarantee rare genetic forms of AD. Thus, the prevailing hypothesis has been that Aß is central to initiation and progression of all AD, despite contrary animal and patient evidence. We show that age-related T cells generate neurodegeneration with compelling features of AD in mice, with distinct T cell functions required for pathological initiation and neurodegenerative progression. Knowledge from these mice was applied to successfully predict previously unknown features of human AD and generate novel tools for its clinical management.

2.
J Alzheimers Dis ; 93(3): 919-921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212123

RESUMEN

Smith and Ashford present a compelling hypothesis on evolution of APOE alleles, namely that ɛ4 prevalence is mediated by immune selection pressure against enteric pathogens. While the ɛ3 allele is more prevalent today, it outcompetedɛ4 only relatively recently, as immune selection pressure for more effective immune responses to such pathogens was alleviated with transition to agrarian from hunter-gatherer lifestyles. Smith and Ashford's hypothesis is intriguing in itself, but the implications for APOE ɛ4 function in Alzheimer's disease are even more so and encourage greater focus on specific aspects of immunity in accounting for both ɛ4-mediated and general Alzheimer's disease risk.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Alelos , Prevalencia , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Genotipo
3.
Oncogene ; 42(25): 2088-2098, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37161052

RESUMEN

The promise of adaptive cancer immunotherapy in treating highly malignant tumors such as glioblastoma multiforme (GBM) can only be realized through expanding its benefits to more patients. Alleviating various modes of immune suppression has so far failed to achieve such expansion, but exploiting endogenous immune enhancers among mutated cancer genes could represent a more direct approach to immunotherapy improvement. We found that Isocitrate Dehydrogenase-1 (IDH1), which is commonly mutated in gliomas, enhances glioma vaccine efficacy in mice and discerns long from short survivors after vaccine therapy in GBM patients. Extracellular IDH1 directly enhanced T cell responses to multiple tumor antigens, and prolonged experimental glioma cell lysis. Moreover, IDH1 specifically bound to and exhibited sialidase activity against CD8. By contrast, mutant IDH1R132H lacked sialidase activity, delayed killing in glioma cells, and decreased host survival after immunotherapy. Overall, our findings identify IDH1 as an immunotherapeutic enhancer that mediates the known T cell-enhancing reaction of CD8 desialylation. This uncovers a new axis for immunotherapeutic improvement in GBM and other cancers, reveals novel physiological and molecular functions of IDH1, and hints at an unexpectedly direct link between lytic T cell function and metabolic activity in target cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácido N-Acetilneuramínico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Neuraminidasa , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia , Mutación
5.
Mech Ageing Dev ; 191: 111351, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910956

RESUMEN

Mitigating effects of aging on human health remains elusive because aging impacts multiple systems simultaneously, and because experimental animals exhibit critical aging differences relative to humans. Separation of aging into discrete processes may identify targetable drivers of pathology, particularly when applied to human-specific features. Gradual homeostatic expansion of CD8 T cells dominantly alters their function in aging humans but not in mice. Injecting T cells into athymic mice induces rapid homeostatic expansion, but its relevance to aging remains uncertain. We hypothesized that homeostatic expansion of T cells injected into T-deficient hosts models physiologically relevant CD8 T cell aging in young mice, and aimed to analyze age-related T cell phenotype and tissue pathology in such animals. Indeed, we found that such injection conferred uniform age-related phenotype, genotype, and function to mouse CD8 T cells, heightened age-associated tissue pathology in young athymic hosts, and humanized amyloidosis after brain injury in secondary wild-type recipients. This validates a model conferring a human-specific aging feature to mice that identifies targetable drivers of tissue pathology. Similar examination of independent aging features should promote systematic understanding of aging and identify additional targets to mitigate its effects on human health.


Asunto(s)
Envejecimiento/inmunología , Amiloidosis/inmunología , Lesiones Encefálicas/inmunología , Linfocitos T CD8-positivos/inmunología , Senescencia Celular/inmunología , Envejecimiento/genética , Amiloidosis/genética , Animales , Senescencia Celular/genética , Femenino , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos
6.
J Clin Neurosci ; 74: 187-193, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32169363

RESUMEN

High grade gliomas are associated with poor prognosis and high mortality. Conventional treatments and management of high grade gliomas have shown little improvement in 5-year overall survival. This phase I trial evaluated the safety, immunogenicity, and potential synergy of surgical resection with Gliadel Wafer implantation, followed by autologous tumor lysate-pulsed dendritic cell (DC) vaccine in patients with malignant glioma. Primary end points of this study were safety and surrogate markers of immunogenicity, overall survival, and progression free survival. Following surgical resection, Gliadel Wafers were placed along the resection cavity. Patients subsequently received intradermal injections of autologous tumor lysate-pulsed DC vaccines 3 times at 2 week intervals. Treatment response was evaluated clinically and through MRI at regular intervals. Twenty-eight patients received Gliadel Wafers and DC vaccination: 11 newly diagnosed (8 glioblastoma [GBM], 2 anaplastic astrocytoma [AA], and 1 anaplastic oligodendroglioma [AO]) and 17 recurrent (15 GBMs, 1 AA, and 1 AO) high grade gliomas. Immunogenicity data was collected for 20 of the 28 patients. Five of 20 patients showed elevated IFN-γ responses following vaccination. Median progression-free survival and overall survival for all GBM patients in the trial from the start of vaccination were 3.6 months and 16.9 months respectively. Comparisons between vaccine responders and non-vaccine responders were not statistically significant. Adjuvant autologous dendritic cells pulsed with tumor-lysate following resection and Gliadel Wafer placement is safe, elicits modest immunogenicity and shows similar clinical outcomes in patients who had DC vaccination in previous studies.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/uso terapéutico , Carmustina/uso terapéutico , Ácidos Decanoicos/uso terapéutico , Células Dendríticas/trasplante , Glioma/terapia , Poliésteres/uso terapéutico , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Antineoplásicos/uso terapéutico , Terapia Combinada/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacunación/métodos
7.
Front Neurol ; 11: 557269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424735

RESUMEN

The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.

8.
Mol Cancer Ther ; 18(3): 718-725, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30755456

RESUMEN

A cell culture platform that enables ex vivo tissue growth from patients or patient-derived xenograft (PDX) models and assesses sensitivity to approved therapies (e.g., temozolomide) in a clinically relevant time frame would be very useful in translational research and personalized medicine. Here, we present a novel three-dimensional (3D) ECM hydrogel system, VersaGel, for assaying ex vivo growth and therapeutic response with standard image microscopy. Specifically, multicellular spheroids deriving from either 5 patients with glioblastoma (GBM) or a renal cell carcinoma (RCC) PDX model were incorporated into VersaGel and treated with temozolomide and several other therapies, guided by the most recent advances in GBM treatment. RCC ex vivo tissue displayed invasive phenotypes in conditioned media. For the GBM patient tumor testing, all five clinical responses were predicted by the results of our 3D-temozolomide assay. In contrast, the MTT assay found no response to temozolomide regardless of the clinical outcome, and moreover, basement membrane extract failed to predict the 2 patient responders. Finally, 1 patient was tested with repurposed drugs currently being administered in GBM clinical trials. Interestingly, IC50s were lower than C max for crizotinib and chloroquine, but higher for sorafenib. In conclusion, a novel hydrogel platform, VersaGel, enables ex vivo tumor growth of patient and PDX tissue and offers insight into patient response to clinically relevant therapies. We propose a novel 3D hydrogel platform, VersaGel, to grow ex vivo tissue (patient and PDX) and assay therapeutic response using time-course image analysis.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Esferoides Celulares/efectos de los fármacos , Temozolomida/farmacología , Anciano , Animales , Carcinoma de Células Renales/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Femenino , Glioblastoma/patología , Humanos , Hidrogeles/farmacología , Masculino , Ratones , Supervivencia sin Progresión , Ensayos Antitumor por Modelo de Xenoinjerto
9.
BMC Cancer ; 14: 920, 2014 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-25481245

RESUMEN

BACKGROUND: Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) is a truly novel protein, defining a new class of secreted factors. We have previously reported that ectopic overexpression of hHSS1 has a negative modulatory effect on cell proliferation and tumorigenesis in glioblastoma model systems. Here we have used microarray analysis, screened glioblastoma samples in The Cancer Genome Atlas (TCGA), and studied the effects of hHSS1 on glioma-derived cells and endothelial cells to elucidate the molecular mechanisms underlying the anti-tumorigenic effects of hHSS1. METHODS: Gene expression profiling of human glioma U87 and A172 cells overexpressing hHSS1 was performed. Ingenuity® iReport™ and Ingenuity Pathway Analysis (IPA) were used to analyze the gene expression in the glioma cells. DNA content and cell cycle analysis were performed by FACS, while cell migration, cell invasion, and effects of hHSS1 on HUVEC tube formation were determined by transwell and matrigel assays. Correlation was made between hHSS1 expression and specific genes in glioblastoma samples in the TCGA database. RESULTS: We have clarified the signaling and metabolic pathways (i.e. role of BRCA1 in DNA damage response), networks (i.e. cell cycle) and biological processes (i.e. cell division process of chromosomes) that result from hHSS1effects upon glioblastoma growth. U87-overexpressing hHSS1 significantly decreased the number of cells in the G0/G1 cell cycle phase, and significantly increased cells in the S and G2/M phases (P < 0.05). U87-overexpressing hHSS1 significantly lost their ability to migrate (P < 0.001) and to invade (P < 0.01) through matrigel matrix. hHSS1-overexpression significantly decreased migration of A172 cells (P < 0.001), inhibited A172 tumor-induced migration and invasion of HUVECs (P < 0.001), and significantly inhibited U87 tumor-induced invasion of HUVECs (P < 0.001). Purified hHSS1 protein inhibited HUVEC tube formation. TCGA database revealed significant correlation between hHSS1 and BRCA2 (r = -0.224, P < 0.0005), ADAMTS1 (r = -0.132, P <0.01) and endostatin (r = 0.141, P < 0.005). CONCLUSIONS: hHSS1-overexpression modulates signaling pathways involved in tumorigenesis. hHSS1 inhibits glioma-induced cell cycle progression, cell migration, invasion and angiogenesis. Our data suggest that hHSS1 is a potential therapeutic for malignant glioblastoma possessing significant antitumor and anti-angiogenic activity.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Proteínas/metabolismo , Transducción de Señal , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional , Daño del ADN , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioma/patología , Humanos , Proteínas de la Membrana , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Reproducibilidad de los Resultados
10.
J Neurol Neurophysiol ; 5(3)2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25346865

RESUMEN

T-lymphocytes have been previously implicated in protecting dopaminergic neurons in the substantianigra from induced cell death. However, the role of T-cells in neurodegenerative models such as Parkinson's disease (PD) has not been fully elucidated. To examine the role of T-lymphocytes on motor behavior in the 6-hydroxydopamine (6-OHDA) unilateral striatal partial lesion PD rat model, we assessed progression of hemi-parkinsonian lesions in the substantia nigra, induced by 6-OHDA striatal injections, in athymic rats (RNU-/-, T-lymphocyte-deficient) as compared to RNU-/+ rats (phenotypically normal). Motor skills were determined by the cylinder and D-amphetamine sulfate-induced rotational behavioral tests. Cylinder behavioral test showed no significant difference between unilaterally lesioned RNU-/- and RNU-/+ rats. However both unilaterally lesioned RNU-/- and RNU-/+ rats favored the use of the limb ipsilateral to lesion. Additionally, amphetamine-induced rotational test revealed greater rotational asymmetry in RNU-/- rats compared to RNU-/+ rats at two- and six-week post-lesion. Quantitative immunohistochemistry confirmed loss of striatal TH-immunopositive fibers in RNU-/- and RNU-/+ rat, as well as blood-brain-barrier changes associated with PD that may influence passage of immune cells into the central nervous system in RNU-/- brains. Specifically, GFAP immunopositive cells were decreased, as were astrocytic end-feet (AQP4) contacting blood vessels (laminin) in the lesioned relative to contralateral striatum. Flow cytometric analysis in 6-OHDA lesioned RNU-/+rats revealed increased CD4+ and decreased CD8+ T cells specifically within lesioned brain. These results suggest that both major T cell subpopulations are significantly and reciprocally altered following 6-OHDA-lesioning, and that global T cell deficiency exacerbates motor behavioral defects in this rat model of PD.

11.
Cancer Immunol Immunother ; 63(9): 911-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24893855

RESUMEN

BACKGROUND: Cancer vaccines reproducibly cure laboratory animals and reveal encouraging trends in brain tumor (glioma) patients. Identifying parameters governing beneficial vaccine-induced responses may lead to the improvement of glioma immunotherapies. CD103(+) CD8 T cells dominate post-vaccine responses in human glioma patients for unknown reasons, but may be related to recent thymic emigrant (RTE) status. Importantly, CD8 RTE metrics correlated with beneficial immune responses in vaccinated glioma patients. METHODS: We show by flow cytometry that murine and human CD103(+) CD8 T cells respond better than their CD103(-) counterparts to tumor peptide-MHC I (pMHC I) stimulation in vitro and to tumor antigens on gliomas in vivo. RESULTS: Glioma responsive T cells from mice and humans both exhibited intrinsic de-sialylation-affecting CD8 beta. Modulation of CD8 T cell sialic acid with neuraminidase and ST3Gal-II revealed de-sialylation was necessary and sufficient for promiscuous binding to and stimulation by tumor pMHC I. Moreover, de-sialylated status was required for adoptive CD8 T cells and lymphocytes to decrease GL26 glioma invasiveness and increase host survival in vivo. Finally, increased tumor ST3Gal-II expression correlated with clinical vaccine failure in a meta-analysis of high-grade glioma patients. CONCLUSIONS: Taken together, these findings suggest that de-sialylation of CD8 is required for hyper-responsiveness and beneficial anti-glioma activity by CD8 T cells. Because CD8 de-sialylation can be induced with exogenous enzymes (and appears particularly scarce on human T cells), it represents a promising target for clinical glioma vaccine improvement.


Asunto(s)
Antígenos CD/inmunología , Neoplasias Encefálicas/terapia , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/farmacología , Células Dendríticas/inmunología , Glioma/terapia , Cadenas alfa de Integrinas/inmunología , Animales , Antígenos CD/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/inmunología , Femenino , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/terapia , Glioma/inmunología , Glioma/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuraminidasa/metabolismo , Neuraminidasa/farmacología , Sialiltransferasas/metabolismo , Sialiltransferasas/farmacología , beta-Galactosida alfa-2,3-Sialiltransferasa
12.
CNS Oncol ; 2(2): 171-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23977426

RESUMEN

Glioblastoma multiforme (GBM) is a malignant neoplasm of the CNS with almost uniform lethality. Even with standard-of-care treatments, the prognosis for patients remains dismal. GBM, as with other malignancies, often acquires treatment resistance after an initial response to therapy. Treatment resistance may come about through the adaptive evolution of tumors in response to selection pressures from treatment interventions and the microenvironment. This review discusses how adaptive evolution might potentially be exploited as a new paradigm in GBM treatment.


Asunto(s)
Evolución Biológica , Neoplasias del Sistema Nervioso Central/terapia , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Quimioterapia , Glioblastoma/genética , Glioblastoma/patología , Humanos
13.
PLoS One ; 8(2): e56077, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418513

RESUMEN

The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE) peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs). Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3) were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA) showed that epilepsy subjects were clustered together tightly (except one sample) and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Epilepsia/genética , Perfilación de la Expresión Génica , Neocórtex/metabolismo , Adolescente , Adulto , Neoplasias Encefálicas/complicaciones , Proteína Similar al Receptor de Calcitonina/genética , Proteínas Portadoras/genética , Niño , Epilepsia/etiología , Transportador 2 de Aminoácidos Excitadores , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Humanos , Masculino , Proteínas Mitocondriales/genética , Neocórtex/patología , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Adhesión en Parafina , Análisis de Componente Principal , Proteínas Tirosina Quinasas Receptoras/genética , Receptores CCR1/genética , Receptores de Somatostatina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Cancer Immunol Immunother ; 62(1): 125-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22847020

RESUMEN

BACKGROUND: This study evaluated the safety and immune responses to an autologous dendritic cell vaccine pulsed with class I peptides from tumor-associated antigens (TAA) expressed on gliomas and overexpressed in their cancer stem cell population (ICT-107). METHODS: TAA epitopes included HER2, TRP-2, gp100, MAGE-1, IL13Rα2, and AIM-2. HLA-A1- and/or HLA-A2-positive patients with glioblastoma (GBM) were eligible. Mononuclear cells from leukapheresis were differentiated into dendritic cells, pulsed with TAA peptides, and administered intradermally three times at two-week intervals. RESULTS: Twenty-one patients were enrolled with 17 newly diagnosed (ND-GBM) and three recurrent GBM patients and one brainstem glioma. Immune response data on 15 newly diagnosed patients showed 33 % responders. TAA expression by qRT-PCR from fresh-frozen tumor samples showed all patient tumors expressed at least three TAA, with 75 % expressing all six. Correlations of increased PFS and OS with quantitative expression of MAGE1 and AIM-2 were observed, and a trend for longer survival was observed with gp100 and HER2 antigens. Target antigens gp100, HER1, and IL13Rα2 were downregulated in recurrent tumors from 4 HLA-A2+ patients. A decrease in or absence of CD133 expression was seen in five patients who underwent a second resection. At a median follow-up of 40.1 months, six of 16 ND-GBM patients showed no evidence of tumor recurrence. Median PFS in newly diagnosed patients was 16.9 months, and median OS was 38.4 months. CONCLUSIONS: Expression of four ICT-107 targeted antigens in the pre-vaccine tumors correlated with prolonged overall survival and PFS in ND-GBM patients. The goal of targeting tumor antigens highly expressed on glioblastoma cancer stem cells is supported by the observation of decreased or absent CD133 expression in the recurrent areas of gadolinium-enhanced tumors.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Epítopos/inmunología , Glioblastoma/terapia , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Células Dendríticas/trasplante , Femenino , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/patología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Expert Rev Vaccines ; 10(6): 875-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21692706

RESUMEN

Vaccination by administering tumor antigen plus cell-free or cellular adjuvant has garnered hope for more effective, less toxic therapy for patients with malignant brain tumors including glioblastoma multiforme. To determine if this approach demonstrates ample clinical promise, all published reports of vaccination for glioma were evaluated. These reports suggest vaccination is associated with low toxicity and favorable clinical outcomes. The possibility of selection bias is evident in many published vaccine trials, but several of the more recent ones appropriately attempt to account for bias. Effective induction of antitumor immunity is consistently observed, and, in the latest trials, correlates with significant clinical improvement.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Glioma/inmunología , Glioma/terapia , Adyuvantes Inmunológicos/administración & dosificación , Ensayos Clínicos como Asunto , Humanos , Resultado del Tratamiento
16.
J Neurooncol ; 102(2): 197-211, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20680400

RESUMEN

The completion of the Human Genome Project resulted in discovery of many unknown novel genes. This feat paved the way for the future development of novel therapeutics for the treatment of human disease based on novel biological functions and pathways. Towards this aim, we undertook a bioinformatics analysis of in-house microarray data derived from purified hematopoietic stem cell populations. This effort led to the discovery of HSS1 (Hematopoietic Signal peptide-containing Secreted 1) and its splice variant HSM1 (Hematopoietic Signal peptide-containing Membrane domain-containing 1). HSS1 gene is evolutionarily conserved across species, phyla and even kingdoms, including mammals, invertebrates and plants. Structural analysis showed no homology between HSS1 and known proteins or known protein domains, indicating that it was a truly novel protein. Interestingly, the human HSS1 (hHSS1) gene is located at chromosome 19q13.33, a genomic region implicated in various cancers, including malignant glioma. Stable expression of hHSS1 in glioma-derived A172 and U87 cell lines greatly reduced their proliferation rates compared to mock-transfected cells. hHSS1 expression significantly affected the malignant phenotype of U87 cells both in vitro and in vivo. Further, preliminary immunohistochemical analysis revealed an increase in hHSS1/HSM1 immunoreactivity in two out of four high-grade astrocytomas (glioblastoma multiforme, WHO IV) as compared to low expression in all four low-grade diffuse astrocytomas (WHO grade II). High-expression of hHSS1 in high-grade gliomas was further supported by microarray data, which indicated that mesenchymal subclass gliomas exclusively up-regulated hHSS1. Our data reveal that HSS1 is a truly novel protein defining a new class of secreted factors, and that it may have an important role in cancer, particularly glioma.


Asunto(s)
Neoplasias Encefálicas/patología , Cromosomas Humanos Par 19/genética , Glioblastoma/patología , Proteínas/metabolismo , Proteínas Supresoras de Tumor/genética , Secuencia de Aminoácidos , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Clonación Molecular , Perfilación de la Expresión Génica , Biblioteca de Genes , Glioblastoma/genética , Glicosilación , Humanos , Técnicas para Inmunoenzimas , Masculino , Proteínas de la Membrana , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tasa de Supervivencia , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS One ; 5(6): e10974, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20539758

RESUMEN

BACKGROUND: Small populations of highly tumorigenic stem-like cells (cancer stem cells; CSCs) can exist within, and uniquely regenerate cancers including malignant brain tumors (gliomas). Many aspects of glioma CSCs (GSCs), however, have been characterized in non-physiological settings. METHODS: We found gene expression similarity superiorly defined glioma "stemness", and revealed that GSC similarity increased with lower tumor grade. Using this method, we examined stemness in human grade IV gliomas (GBM) before and after dendritic cell (DC) vaccine therapy. This was followed by gene expression, phenotypic and functional analysis of murine GL26 tumors recovered from nude, wild-type, or DC-vaccinated host brains. RESULTS: GSC similarity was specifically increased in post-vaccine GBMs, and correlated best to vaccine-altered gene expression and endogenous anti-tumor T cell activity. GL26 analysis confirmed immune alterations, specific acquisition of stem cell markers, specifically enhanced sensitivity to anti-stem drug (cyclopamine), and enhanced tumorigenicity in wild-type hosts, in tumors in proportion to anti-tumor T cell activity. Nevertheless, vaccine-exposed GL26 cells were no more tumorigenic than parental GL26 in T cell-deficient hosts, though they otherwise appeared similar to GSCs enriched by chemotherapy. Finally, vaccine-exposed GBM and GL26 exhibited relatively homogeneous expression of genes expressed in progenitor cells and/or differentiation. CONCLUSIONS: T cell activity represents an inducible physiological process capable of proportionally enriching GSCs in human and mouse gliomas. Stem-like gliomas enriched by strong T cell activity, however, may differ from other GSCs in that their stem-like properties may be disassociated from increased tumor malignancy and heterogeneity under specific host immune conditions.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Células Madre Neoplásicas/citología , Linfocitos T Citotóxicos/citología , Animales , Secuencia de Bases , Neoplasias Encefálicas/genética , Cartilla de ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioma/genética , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
19.
Expert Opin Investig Drugs ; 18(4): 509-19, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19335279

RESUMEN

BACKGROUND: DCVax-Brain (Northwest Biotherapeutics, Inc., Bethesda, MD, USA) is a personalized treatment for brain tumors. Its approach of administering autologous tumor antigen-bearing dendritic cells (DCs) has garnered hope for more effective and less toxic therapy for patients with malignant brain tumors including glioblastoma multiforme (GBM). DCVax-Brain composition and efficacy are not fully disclosed, although sponsors claim it is poised to critically test clinical DC vaccine efficacy in GBM patients. OBJECTIVE: This review examines the efficacy of DC vaccine therapy in treating GBM patients. REVIEW QUESTION: To determine if the approach of DC vaccination followed by DCVax-Brain shows ample clinical promise in GBM patients. SEARCH STRATEGY: All published reports of DC vaccination for GBM and press releases regarding DCVax-Brain findings were evaluated. CRITICAL APPRAISAL OF REPORTS AND SUMMARY OF OUTCOMES: Published DC vaccine trials for high-grade glioma patients suggest favorable clinical outcomes not easily ascribed to non-treatment parameters. Evidence of possible selection bias exists in many reports, but efforts to account for this are evident in the most recent publications. CONCLUSION: DC vaccine trials provide evidence of low toxicity in GBM patients and effective induction of antitumor immunity in the latest publications correlate with clinical improvements. Preliminary reports on DCVax-Brain clinical outcomes seem to follow these trends.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Glioblastoma/inmunología , Glioblastoma/terapia , Animales , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/química , Humanos , Inmunoterapia Activa , Resultado del Tratamiento
20.
Cancer Res ; 68(14): 5955-64, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18632651

RESUMEN

Cancer vaccine trials have failed to yield robust immune-correlated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but only early phase I vaccine trial results have been reported. Immune and clinical responses from a phase II GBM vaccine trial are reported here. IFN-gamma responsiveness was quantified in peripheral blood of 32 GBM patients given therapeutic dendritic cell vaccines. Posttreatment times to tumor progression (TTP) and survival (TTS) were compared in vaccine responders and nonresponders and were correlated with immune response magnitudes. GBM patients (53%) exhibited >or=1.5-fold vaccine-enhanced cytokine responses. Endogenous antitumor responses of similar magnitude occurred in 22% of GBM patients before vaccination. Vaccine responders exhibited significantly longer TTS and TTP relative to nonresponders. Immune enhancement in vaccine responders correlated logarithmically with TTS and TTP spanning postvaccine chemotherapy, but not with initial TTP spanning vaccination alone. This is the first report of a progressive correlation between cancer clinical outcome and T-cell responsiveness after therapeutic vaccination in humans and the first tracing of such correlation to therapeutically exploitable tumor alteration. As such, our findings offer unique opportunities to identify cellular and molecular components of clinically meaningful antitumor immunity in humans.


Asunto(s)
Neoplasias Encefálicas/microbiología , Neoplasias Encefálicas/terapia , Glioblastoma/inmunología , Glioblastoma/terapia , Adulto , Anciano , Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer , Células Dendríticas/inmunología , Femenino , Humanos , Sistema Inmunológico , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA