Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Stress ; 8: 1-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476765

RESUMEN

Mesenchymal-epithelial plasticity driving cancer progression in cancer-associated fibroblasts (CAFs) is undetermined. This work identifies a subgroup of CAFs in human breast cancer exhibiting mesenchymal-to-epithelial transition (MET) or epithelial-like profile with high miR-200c expression. MiR-200c overexpression in fibroblasts is sufficient to drive breast cancer aggressiveness. Oxidative stress in the tumor microenvironment induces miR-200c by DNA demethylation. Proteomics, RNA-seq and functional analyses reveal that miR-200c is a novel positive regulator of NFκB-HIF signaling via COMMD1 downregulation and stimulates pro-tumorigenic inflammation and glycolysis. Reprogramming fibroblasts toward MET via miR-200c reduces stemness and induces a senescent phenotype. This pro-tumorigenic profile in CAFs fosters carcinoma cell resistance to apoptosis, proliferation and immunosuppression, leading to primary tumor growth, metastases, and resistance to immuno-chemotherapy. Conversely, miR-200c inhibition in fibroblasts restrains tumor growth with abated oxidative stress and an anti-tumorigenic immune environment. This work determines the mechanisms by which MET in CAFs via miR-200c transcriptional enrichment with DNA demethylation triggered by oxidative stress promotes cancer progression. CAFs undergoing MET trans-differentiation and senescence coordinate heterotypic signaling that may be targeted as an anti-cancer strategy.

2.
Int J Cancer ; 153(9): 1671-1683, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497753

RESUMEN

Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Humanos , Femenino , Neoplasias de la Mama/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucólisis , Ácido Láctico/metabolismo , FN-kappa B/metabolismo , Apoptosis , Línea Celular Tumoral , Microambiente Tumoral , Proteína p53 Supresora de Tumor/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362298

RESUMEN

Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.


Asunto(s)
Enfermedades Musculares , Insuficiencia Renal Crónica , Ratones , Animales , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Enfermedades Musculares/metabolismo , Glucosa/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Ácidos Grasos/metabolismo , Adenina/metabolismo
4.
Front Oncol ; 12: 906494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814364

RESUMEN

The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.

5.
Am J Cancer Res ; 11(9): 4624-4637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659910

RESUMEN

Post-transplant lymphoproliferative disorders (PTLD) are among the most serious complications after solid organ transplantation (SOT). Monomorphic diffuse large B-cell lymphoma (DLBCL) is the most common subtype of PTLD. Historically, outcomes of PTLD have been poor with high mortality rates and allograft loss, although this has improved in the last 10 years. Most of our understanding about PTLD DLBCL is extrapolated from studies in non-PTLD DLBCL, and while several clinical factors have been identified and validated for predicting non-PTLD DLBCL outcomes, the molecular profile of PTLD DLBCL has not yet been characterized. Compartment-specific metabolic reprograming has been described in non-PTLD DLBCL with a lactate uptake metabolic phenotype with high monocarboxylate transporter 1 (MCT1) expression associated with worse outcomes. The aim of our study was to compare the outcomes of PTLD in our transplant center to historic cohorts, as well as study a subgroup of our PTLD DLBCL tumors and compare metabolic profiles with non-PTLD DLBCL. We performed a retrospective single institution study of all adult patients who underwent a SOT between the years 1992-2018, who were later diagnosed with PTLD. All available clinical information was extracted from the patients' medical records. Tumor metabolic markers were studied in a subgroup of PTLD DLBCL and compared to a group of non-PTLD DLBCL. Thirty patients were diagnosed with PTLD following SOT in our center. Median time from SOT to PTLD diagnosis was 62.8 months (IQR 7.6; 134.4), with 37% of patients diagnosed with early PTLD, and 63% with late PTLD. The most common PTLD subtype was DLBCL. Most patients were treated with reduction of their immunosuppression (RIS) including a group who were switched from calcineurin inhibitor (CNI) to mTOR inhibitor based IS, in conjunction with standard anti-lymphoma chemoimmunotherapy. Progression free survival of the PTLD DLBCL cohort was calculated at 86% at 1 year, and 77% at 3 and 5-years, with overall survival of 86% at 1 and 3-years, and 75% at 5 years. Death censored allograft survival in the kidney cohort was 100% at 1 year, and 93% at 3, 5 and 10 years. MCT1 H scores were significantly higher in a subset of the non-PTLD DLBCL patients than in a PTLD DLBCL cohort. Our data is concordant with improved PTLD outcomes in the last 10 years. mTOR inhibitors could be an alternative to CNI as a RIS strategy. Finally, PTLD DLBCL may have a distinct metabolic profile with reduced MCT1 expression compared to non-PTLD DLBCL, but further studies are needed to corroborate our limited cohort findings and to determine if a specific metabolic profile is associated with outcomes.

6.
Methods Cell Biol ; 163: 93-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785171

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common subsite of head and neck cancer, with a 5-year survival rate of only 50%. There is a pressing need for animal models that recapitulate the human disease to understand the factors driving OSCC carcinogenesis. Many laboratories have used the chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) to investigate OSCC formation. The importance of the 4NQO mouse model is that it mimics the stepwise progression observed in OSCC patients. The 4NQO carcinogen model has the advantage that it can be used with transgenic mice with genetic modification in specific tissue types to investigate their role in driving cancer progression. Herein, we describe the basic approach for administering 4NQO to mice to induce OSCC and methods for assessing the tissue and disease progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Carcinogénesis , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/genética , Humanos , Ratones , Ratones Transgénicos , Neoplasias de la Boca/inducido químicamente , Carcinoma de Células Escamosas de Cabeza y Cuello
7.
Sci Rep ; 11(1): 2974, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536542

RESUMEN

In obesity, adipose tissue derived inflammation is associated with unfavorable metabolic consequences. Uremic inflammation is prevalent and contributes to detrimental outcomes. However, the contribution of adipose tissue inflammation in uremia has not been characterized. We studied the contribution of adipose tissue to uremic inflammation in-vitro, in-vivo and in human samples. Exposure to uremic serum resulted in activation of inflammatory pathways including NFκB and HIF1, upregulation of inflammatory cytokines/chemokines and catabolism with lipolysis, and lactate production. Also, co-culture of adipocytes with macrophages primed by uremic serum resulted in higher inflammatory cytokine expression than adipocytes exposed only to uremic serum. Adipose tissue of end stage renal disease subjects revealed increased macrophage infiltration compared to controls after BMI stratification. Similarly, mice with kidney disease recapitulated the inflammatory state observed in uremic patients and additionally demonstrated increased peripheral monocytes and inflammatory polarization of adipose tissue macrophages (ATMS). In contrast, adipose tissue in uremic IL-6 knock out mice showed reduced ATMS density compared to uremic wild-type controls. Differences in ATMS density highlight the necessary role of IL-6 in macrophage infiltration in uremia. Uremia promotes changes in adipocytes and macrophages enhancing production of inflammatory cytokines. We demonstrate an interaction between uremic activated macrophages and adipose tissue that augments inflammation in uremia.


Asunto(s)
Adipocitos/inmunología , Fallo Renal Crónico/inmunología , Macrófagos/inmunología , Obesidad/complicaciones , Uremia/inmunología , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Estudios de Casos y Controles , Comunicación Celular/inmunología , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Humanos , Inflamación/sangre , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Lipólisis/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Obesidad/sangre , Obesidad/inmunología , Obesidad/metabolismo , Cultivo Primario de Células , Células RAW 264.7 , Células THP-1 , Uremia/sangre , Uremia/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165962, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920118

RESUMEN

Chondrosarcoma is the second most common primary bone malignancy, representing one fourth of all primary bone sarcomas. It is typically resistant to radiation and chemotherapy treatments. However, the molecular mechanisms that contribute to cancer aggressiveness in chondrosarcomas remain poorly characterized. Here, we studied the role of mitochondrial transporters in chondrosarcoma aggressiveness including chemotherapy resistance. Histological grade along with stage are the most important prognostic biomarkers in chondrosarcoma. We found that high-grade human chondrosarcoma tumors have higher expression of the mitochondrial protein, translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), compared to low-grade tumors. TOMM20 overexpression in human chondrosarcoma cells induces chondrosarcoma tumor growth in vivo. TOMM20 drives proliferation, resistance to apoptosis and chemotherapy resistance. Also, TOMM20 induces markers of epithelial to mesenchymal transition (EMT) and metabolic reprogramming in these mesenchymal tumors. In conclusion, TOMM20 drives chondrosarcoma aggressiveness and resistance to chemotherapy.


Asunto(s)
Neoplasias Óseas/metabolismo , Condrosarcoma/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Proliferación Celular/efectos de los fármacos , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Células Tumorales Cultivadas
9.
Mol Cancer Res ; 17(9): 1893-1909, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239287

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Neoplasias de Cabeza y Cuello/patología , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Regulación hacia Arriba , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Trasplante de Neoplasias , Estrés Oxidativo/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral/efectos de los fármacos
10.
Front Oncol ; 8: 436, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364350

RESUMEN

Background: Metformin, an oral anti-hyperglycemic drug which inhibits mitochondrial complex I and oxidative phosphorylation has been reported to correlate with improved outcomes in head and neck squamous cell carcinoma (HNSCC) and other cancers. This effect is postulated to occur through disruption of tumor-driven metabolic and immune dysregulation in the tumor microenvironment (TME). We report new findings on the impact of metformin on the tumor and immune elements of the TME from a clinical trial of metformin in HNSCC. Methods: Human papilloma virus-(HPV-) tobacco+ mucosal HNSCC samples (n = 12) were compared to HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples (n = 17) from patients enrolled in a clinical trial. Apoptosis in tumor samples pre- and post-treatment with metformin was compared by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Metastatic lymph nodes with extra-capsular extension (ECE) in metformin-treated patients (n = 7) were compared to archival lymph node samples with ECE (n = 11) for differences in immune markers quantified by digital image analysis using co-localization and nuclear algorithms (PD-L1, FoxP3, CD163, CD8). Results: HPV-, tobacco + HNSCC (mean Δ 13.7/high power field) specimens had a significantly higher increase in apoptosis compared to HPV+ OPSCC specimens (mean Δ 5.7/high power field) (p < 0.001). Analysis of the stroma at the invasive front in ECE nodal specimens from both HPV-HNSCC and HPV+ OPSCC metformin treated specimens showed increased CD8+ effector T cell infiltrate (mean 22.8%) compared to archival specimens (mean 10.7%) (p = 0.006). Similarly, metformin treated specimens showed an increased FoxP3+ regulatory T cell infiltrate (mean 9%) compared to non-treated archival specimens (mean 5%) (p = 0.019). Conclusions: This study presents novel data demonstrating that metformin differentially impacts HNSCC subtypes with greater apoptosis in HPV-HNSCC compared to HPV+ OPSCC. Moreover, we present the first in vivo human evidence that metformin may also trigger increased CD8+ Teff and FoxP3+ Tregs in the TME, suggesting an immunomodulatory effect in HNSCC. Further research is necessary to assess the effect of metformin on the TME of HNSCC.

11.
Front Oncol ; 8: 324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30211114

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.

12.
Otolaryngol Head Neck Surg ; 158(5): 867-877, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29232177

RESUMEN

Objective Many aggressive head and neck cancers contain 2 metabolically coupled tumor compartments: a glycolytic stromal compartment with low caveolin-1 (CAV1) and high monocarboxylate transporter 4 (MCT4) expression and a highly proliferative carcinoma cell compartment with high MCT1. Metabolites are shuttled by MCTs from stroma to carcinoma to fuel tumor growth. We studied the effect of carcinoma-fibroblast coinjection and metformin administration on a mouse model of head and neck squamous cell carcinoma. Study Design Xenograft head and neck squamous cell carcinoma model. Setting Basic science laboratory. Subjects and Methods Oral cavity carcinoma cells were injected alone or as coinjection with human fibroblasts into nude mice to generate xenograft tumors. Tumors were excised and stained with immunohistochemistry for markers of metabolic coupling and apoptosis, including MCT1, MCT4, CAV1, and TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Strength of staining was assessed by a pathologist or computer-assisted pathology software. Metformin was administered orally to mice to test effects on immunohistochemical markers in xenografts. Results Coinjection tumors were 2.8-fold larger ( P = .048) and had 1.4-fold stronger MCT1 staining ( P = .016) than tumors from homotypic carcinoma cell injection. Metformin decreased the size of coinjection xenograft tumors by 45% ( P = .025). Metformin reduced MCT1 staining by 28% ( P = .05) and increased carcinoma cell apoptosis 1.8-fold as marked by TUNEL assay ( P = .005). Metformin did not have a significant effect on tumor size when CAV1 knockdown fibroblasts were used in coinjection. Conclusion Coinjection with fibroblasts increases tumor growth and metabolic coupling in oral cavity cancer xenografts. Fibroblast CAV1 expression is required for metformin to disrupt metabolic coupling and decrease xenograft size.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Hipoglucemiantes/farmacología , Metformina/farmacología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Animales , Apoptosis , Caveolina 1/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Etiquetado Corte-Fin in Situ , Ratones , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Semin Oncol ; 44(3): 204-217, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29248132

RESUMEN

Metabolic heterogeneity between neoplastic cells and surrounding stroma has been described in several epithelial malignancies; however, the metabolic phenotypes of neoplastic lymphocytes and neighboring stroma in diffuse large B-cell lymphoma (DLBCL) is unknown. We investigated the metabolic phenotypes of human DLBCL tumors by using immunohistochemical markers of glycolytic and mitochondrial oxidative phosphorylation (OXPHOS) metabolism. The lactate importer MCT4 is a marker of glycolysis, whereas the lactate importer MCT1 and TOMM20 are markers of OXPHOS metabolism. Staining patterns were assessed in 33 DLBCL samples as well as 18 control samples (non-neoplastic lymph nodes). TOMM20 and MCT1 were highly expressed in neoplastic lymphocytes, indicating an OXPHOS phenotype, whereas non-neoplastic lymphocytes in the control samples did not express these markers. Stromal cells in DLBCL samples strongly expressed MCT4, displaying a glycolytic phenotype, a feature not seen in stromal elements of non-neoplastic lymphatic tissue. Furthermore, the differential expression of lactate exporters (MCT4) on tumor-associated stroma and lactate importers (MCT1) on neoplastic lymphocytes support the hypothesis that neoplastic cells are metabolically linked to the stroma likely via mutually beneficial reprogramming. MCT4 is a marker of tumor-associated stroma in neoplastic tissue. Our findings suggest that disruption of neoplastic-stromal cell metabolic heterogeneity including MCT1 and MCT4 blockade should be studied to determine if it could represent a novel treatment target in DLBCL.


Asunto(s)
Glucólisis , Linfoma de Células B Grandes Difuso/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Inmunohistoquímica , Linfocitos/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Receptores de Superficie Celular/metabolismo , Células del Estroma/metabolismo , Simportadores/metabolismo
14.
Semin Oncol ; 44(3): 218-225, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29248133

RESUMEN

BACKGROUND: Twenty percent of patients with classical Hodgkin Lymphoma (cHL) have aggressive disease defined as relapsed or refractory disease to initial therapy. At present we cannot identify these patients pre-treatment. The microenvironment is very important in cHL because non-cancer cells constitute the majority of the cells in these tumors. Non-cancer intra-tumoral cells, such as tumor-associated macrophages (TAMs) have been shown to promote tumor growth in cHL via crosstalk with the cancer cells. Metabolic heterogeneity is defined as high mitochondrial metabolism in some tumor cells and glycolysis in others. We hypothesized that there are metabolic differences between cancer cells and non-cancer tumor cells, such as TAMs and tumor-infiltrating lymphocytes in cHL and that greater metabolic differences between cancer cells and TAMs are associated with poor outcomes. METHODS: A case-control study was conducted with 22 tissue samples of cHL at diagnosis from a single institution. The case samples were from 11 patients with aggressive cHL who had relapsed after standard treatment with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) or were refractory to this treatment. The control samples were from 11 patients with cHL who achieved a remission and never relapsed after ABVD. Reactive non-cancerous lymph nodes from four subjects served as additional controls. Samples were stained by immunohistochemistry for three metabolic markers: translocase of the outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4). TOMM20 is a marker of mitochondrial oxidative phosphorylation (OXPHOS) metabolism. Monocarboxylate transporter 1 (MCT1) is the main importer of lactate into cells and is a marker of OXPHOS. Monocarboxylate transporter 4 (MCT4) is the main lactate exporter out of cells and is a marker of glycolysis. The immunoreactivity for TOMM20, MCT1, and MCT4 was scored based on staining intensity and percentage of positive cells, as follows: 0 for no detectable staining in > 50% of cells; 1+ for faint to moderate staining in > 50% of cells, and 2+ for high or strong staining in > 50% of cells. RESULTS: TOMM20, MCT1, and MCT4 expression was significantly different in Hodgkin and Reed Sternberg (HRS) cells, which are the cancerous cells in cHL compared with TAMs and tumor-associated lymphocytes. HRS have high expression of TOMM20 and MCT1, while TAMs have absent expression of TOMM20 and MCT1 in all but two cases. Tumor-infiltrating lymphocytes have low TOMM20 expression and absent MCT1 expression. Conversely, high MCT4 expression was found in TAMs, but absent in HRS cells in all but one case. Tumor-infiltrating lymphocytes had absent MCT4 expression. Reactive lymph nodes in contrast to cHL tumors had low TOMM20, MCT1, and MCT4 expression in lymphocytes and macrophages. High TOMM20 and MCT1 expression in cancer cells with high MCT4 expression in TAMs is a signature of high metabolic heterogeneity between cancer cells and the tumor microenvironment. A high metabolic heterogeneity signature was associated with relapsed or refractory cHL with a hazard ratio of 5.87 (1.16-29.71; two-sided P < .05) compared with the low metabolic heterogeneity signature. CONCLUSION: Aggressive cHL exhibits features of metabolic heterogeneity with high mitochondrial metabolism in cancer cells and high glycolysis in TAMs, which is not seen in reactive lymph nodes. Future studies will need to confirm the value of these markers as prognostic and predictive biomarkers in clinical practice. Treatment intensity may be tailored in the future to the metabolic profile of the tumor microenvironment and drugs that target metabolic heterogeneity may be valuable in this disease.


Asunto(s)
Glucólisis , Enfermedad de Hodgkin/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Fosforilación Oxidativa , Receptores de Superficie Celular/metabolismo , Células de Reed-Sternberg/metabolismo , Simportadores/metabolismo , Microambiente Tumoral , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bleomicina/administración & dosificación , Estudios de Casos y Controles , Dacarbazina/administración & dosificación , Doxorrubicina/administración & dosificación , Femenino , Enfermedad de Hodgkin/tratamiento farmacológico , Humanos , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor/metabolismo , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Musculares/metabolismo , Inducción de Remisión , Vinblastina/administración & dosificación
15.
Semin Oncol ; 44(3): 226-232, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29248134

RESUMEN

BACKGROUND: High oxidative stress as defined by hydroxyl and peroxyl activity is often found in the stroma of human breast cancers. Oxidative stress induces stromal catabolism, which promotes cancer aggressiveness. Stromal cells exposed to oxidative stress release catabolites such as lactate, which are up-taken by cancer cells to support mitochondrial oxidative phosphorylation. The transfer of catabolites between stromal and cancer cells leads to metabolic heterogeneity between these cells and increased cancer cell proliferation and reduced apoptosis in preclinical models. N-Acetylcysteine (NAC) is an antioxidant that reduces oxidative stress and reverses stromal catabolism and stromal-carcinoma cell metabolic heterogeneity, resulting in reduced proliferation and increased apoptosis of cancer cells in experimental models of breast cancer. The purpose of this clinical trial was to determine if NAC could reduce markers of stromal-cancer metabolic heterogeneity and markers of cancer cell aggressiveness in human breast cancer. METHODS: Subjects with newly diagnosed stage 0 and I breast cancer who were not going to receive neoadjuvant therapy prior to surgical resection were treated with NAC before definitive surgery to assess intra-tumoral metabolic markers. NAC was administered once a week intravenously at a dose of 150 mg/kg and 600 mg twice daily orally on the days not receiving intravenous NAC. Histochemistry for the stromal metabolic markers monocarboxylate transporter 4 (MCT4) and caveolin-1 (CAV1) and the Ki67 proliferation assay and TUNEL apoptosis assay in carcinoma cells were performed in pre- and post-NAC specimens. RESULTS: The range of days on NAC was 14-27 and the mean was 19 days. Post-treatment biopsies showed significant decrease in stromal MCT4 and reduced Ki67 in carcinoma cells. NAC did not significantly change stromal CAV1 and carcinoma TUNEL staining. NAC was well tolerated. CONCLUSIONS: NAC as a single agent reduces MCT4 stromal expression, which is a marker of glycolysis in breast cancer with reduced carcinoma cell proliferation. This study suggests that modulating metabolism in the tumor microenvironment has the potential to impact breast cancer proliferation.


Asunto(s)
Acetilcisteína/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Depuradores de Radicales Libres/uso terapéutico , Mastectomía , Adulto , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Caveolina 1/metabolismo , Proliferación Celular , Femenino , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Terapia Neoadyuvante , Estadificación de Neoplasias , Proyectos Piloto , Células del Estroma/metabolismo , Resultado del Tratamiento , Microambiente Tumoral
16.
Nephrol Dial Transplant ; 32(6): 943-951, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605780

RESUMEN

BACKGROUND.: End-stage renal disease (ESRD) is associated with inflammation and increased reactive oxygen species (ROS). Inflammation and oxidative stress are associated with several complications of ESRD. The aim of this study was to determine histological characteristics of adipose tissue and muscle mitochondrial function in uremia and its relationship with inflammation. METHODS.: ESRD patients ( n = 18) and controls ( n = 6) were enrolled for studies of adipose and muscle tissue by immunohistochemistry and western blot. In a uremic muscle cell model, C2C12 cells were exposed to uremic serum and inflammatory cytokines. Mitochondrial function was studied by MitoTracker Orange, translocase of the mitochondrial outer membrane 20 (TOMM20) and mitochondrial oxidative phosphorylation complex subunit expression. RESULTS.: ESRD patients had increased macrophage infiltration in subcutaneous and visceral adipose tissue compared with controls, even in nonobese ESRD patients (P < 0.05). Compared with controls, TOMM20 expression in muscle tissue was lower in ESRD, consistent with reduced mitochondrial function (P < 0.05). C2C12 exposed to uremia had decreased mitotracker intensity (P < 0.05) and the reduced mitochondrial function was rescued by N-acetyl cysteine (P < 0.01). Similarly, C2C12 cells exposed to tumor necrosis factor α (TNF-α)/interleukin-6 (IL-6) have decreased mitotracker intensity (P < 0.01) that was rescued with adiponectin (P < 0.05). C2C12 exposed to TNF-α, IL-6 and buthionine sulfoximine had decreased TOMM20 expression and cells exposed to TNF-α showed a decrease in subunits of mitochondrial complexes I and III. CONCLUSION.: Our data indicate that uremia is associated with increased adipose tissue macrophage infiltration and concurrent muscle tissue mitochondrial dysfunction induced by inflammation/ROS. Adipose tissue is a potential source of inflammation in ESRD that is not due to increased adiposity and may contribute to mitochondrial dysfunction in uremia.


Asunto(s)
Grasa Intraabdominal/inmunología , Fallo Renal Crónico/inmunología , Mitocondrias Musculares/metabolismo , Uremia/inmunología , Adiponectina/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Línea Celular , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-6/metabolismo , Grasa Intraabdominal/metabolismo , Fallo Renal Crónico/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Uremia/metabolismo
17.
Otolaryngol Head Neck Surg ; 157(5): 798-807, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28608777

RESUMEN

Objective In many cancers, including head and neck squamous cell carcinoma (HNSCC), different regions within a tumor have different metabolic phenotypes. Transfer of metabolites between compartments promotes tumor growth and aggressive behavior. Metabolic compartmentalization in HNSCC nodal metastases has not been studied, nor has its impact on extracapsular extension or clinical outcomes been determined. Study Design Retrospective analysis based on immunohistochemistry staining. Setting Tertiary care center. Subjects and Methods Primary tumors and nodal metastases from 34 surgically treated oral cavity HNSCC patients with extracapsular extension (ECE) were stained for monocarboyxlate transporter (MCT) 4, MCT1, translocase of outer mitochondrial membrane 20, and Ki-67. Strength of staining was assessed using a computer-assisted pathology algorithm. Immunohistochemistry (IHC) scores along with clinical factors were used to predict disease-free survival (DFS). Results Patterns of IHC staining showed metabolic compartmentalization both at the primary tumor sites and in nodal metastases. MCT4 staining in the perinodal stroma was significantly higher in specimens with ECE greater than 1 mm (macro-ECE, P = .01). Patients with high perinodal MCT4 staining were compared with those with low perinodal MCT4 staining. On multivariate analysis, only high perinodal MCT4 staining had a significant impact on DFS ( P = .02); patients with high perinodal MCT4 had worse survival. DFS was not significantly worsened by advancing T stage, N stage, ECE extent, or perineural invasion. Conclusion Oral HNSCC displays compartmentalized tumor metabolism at both primary and metastases. Greater cancer-associated stromal conversion around ECE, denoted by high stromal MCT4, may be a biomarker for aggressive disease and worsened DFS.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Metástasis Linfática/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/cirugía , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/cirugía , Estadificación de Neoplasias , Fenotipo , Estudios Retrospectivos
18.
Front Cell Dev Biol ; 5: 27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421181

RESUMEN

Introduction: Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. Methods: MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. Results: High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ (p < 0.001). Tumors with an in-situ component were less likely to stain strongly for MCT1 (p < 0.05). High nuclear grade was associated with higher MCT1 staining (p < 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 (p < 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status (p < 0.05). Conclusion: MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors.

19.
J Biol Chem ; 291(51): 26291-26303, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27803158

RESUMEN

A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ácido Glutámico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ácido Láctico/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Técnicas de Cocultivo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Ácido Glutámico/genética , Glucólisis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Células MCF-7 , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Monoéster Fosfórico Hidrolasas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA