Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502733

RESUMEN

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Asunto(s)
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacología , Ligandos , Quimiocinas/metabolismo , Transducción de Señal , Receptores CXCR4/genética , Quimiocina CXCL12
2.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390523

RESUMEN

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

4.
J Pharmacol Exp Ther ; 388(2): 576-585, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37541763

RESUMEN

Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Ratas , Animales , Gas Mostaza/toxicidad , Mesna/farmacología , Mesna/uso terapéutico , Antídotos/farmacología , Antídotos/uso terapéutico , Pulmón , Sodio , Sustancias para la Guerra Química/toxicidad
5.
Cell Rep Methods ; 3(3): 100422, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056381

RESUMEN

The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).


Asunto(s)
Anticuerpos de Dominio Único , Ligandos , Proteínas de la Membrana , Colorantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo
6.
J Chromatogr A ; 1681: 463454, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36099696

RESUMEN

Methyl isocyanate (MIC), an intermediate in the synthesis of carbamate pesticides, is a toxic industrial chemical that causes irritation and damage to the eyes, respiratory tract, and skin. Due to the high reactivity of MIC, it binds to proteins to form protein adducts. While these adducts can be used as biomarkers to verify exposure to MIC, methods to detect MIC adducts are cumbersome, typically involving enzymatic (pronase) or strong acid (Edman degradation) hydrolysis of hemoglobin. Hence, in this study, a simple method was developed which utilizes base hydrolysis of MIC-tyrosine adducts from isolated hemoglobin to form phenyl methyl carbamate (PMC), followed by rapid liquid-liquid extraction, and liquid chromatography tandem mass spectrometry analysis. The hydrolysis chemistry is the first report of base hydrolysis of a tyrosine-ß-C-hydroxo phenol bond in aqueous solution. The method produced excellent sensitivity (detection limit of 0.02 mg/kg), linearity (R2 = 0.998, percent residual accuracies > 96), and dynamic range (0.06‒15 mg/kg). The accuracy and precision (100 ± 9% and < 10% relative standard deviation, respectively) of the method were outstanding compared to existing techniques. The validated method was able to detect significantly elevated levels of PMC from hemoglobin isolated from MIC-exposed rats.


Asunto(s)
Hemoglobinas , Plaguicidas , Animales , Biomarcadores/análisis , Carbamatos/toxicidad , Hemoglobinas/análisis , Isocianatos , Fenoles , Pronasa , Ratas , Tirosina
7.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L525-L535, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041220

RESUMEN

E-cigarette vaping is a major aspect of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of subacute and chronic e-cigarette vaping exposure have shown many proinflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting respiratory viruses, including SARS-CoV-2, without genetic alteration of the animal or virus. Using a 2-day, whole body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung, and nasal histopathology, and gene expression in the nasopharynx and lung through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (P < 0.05), post hoc Tukey-Kramer and Dunn's tests, respectively, were performed to make pairwise comparisons between groups. In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in gene expression associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis [transforming growth factor-ß (TGF-ß)], nicotine-independent increase oxidative stress response (SOD-2), and a nicotine-independent decrease in vasculogenesis/angiogenesis (VEGF-A). In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway [angiotensin-converting enzyme (ACE), ACE2], coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1ß, TNF-α, and CXCL-10), fibrosis (TGF-ß and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cigarette vaping. In addition, this is the first report that e-cigarette vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation of mRNAs in the respiratory tract from pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, neutrophil extracellular trap release (NETosis), vasculogenesis, and angiogenesis.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Transcriptoma , Vapeo , Animales , Cricetinae , Masculino , Enzima Convertidora de Angiotensina 2 , Angiotensinas , Cotinina , Fibrosis , Inflamación/patología , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Mesocricetus , Nicotina/farmacología , Renina , Superóxido Dismutasa , Tromboplastina , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa , Vapeo/efectos adversos , Factor A de Crecimiento Endotelial Vascular
8.
Artículo en Inglés | MEDLINE | ID: mdl-34974317

RESUMEN

Sodium 2-mercaptoethane sulfonate (MESNA) is a thiol-containing compound that has proven to be effective in inactivating acrolein, the toxic metabolite of some anti-cancer drugs (e.g., cyclophosphamide and ifosphamide). Also, it scavenges free radicals which cause numerous disorders by attacking biological molecules. Current methods available to analyze MESNA in biological matrices include colorimetry and high-performance liquid chromatography (HPLC) with ultraviolet, fluorescence, or electrochemical detection. These methods have several limitations including low sensitivity, poor selectivity, a high degree of difficulty, and long analysis times. Hence, a rapid, simple, and sensitive HPLC tandem mass spectrometry (MS/MS) method was developed and validated to quantify MESNA in rat plasma following IP administration. The analysis of MESNA was accomplished via plasma protein precipitation, centrifugation, supernatant evaporation, reconstitution, and HPLC-MS/MS analysis. The method showcases an outstanding limit of detection (20 nM), excellent linearity (R2 = 0.999, and percent residual accuracy >90%) and a wide linear range (0.05-200 µM). The method also produced good accuracy and precision (100 ± 10% and <10% relative standard deviation, respectively). The validated method was successfully used to analyze MESNA from treated animals and will allow easier development of MESNA for therapeutic purposes.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Mesna/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Estabilidad de Medicamentos , Límite de Detección , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
9.
Clin Toxicol (Phila) ; 60(5): 615-622, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34989638

RESUMEN

CONTEXT: Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS: We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION: We conclude that cobinamide could potentially serve as a CH3SH antidote.


Asunto(s)
Antídotos , Cobamidas , Animales , Antídotos/uso terapéutico , Chlorocebus aethiops , Humanos , Ratones , Conejos , Compuestos de Sulfhidrilo , Vitamina B 12
10.
Am J Respir Cell Mol Biol ; 66(3): 323-336, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34890296

RESUMEN

Administration of high concentrations of oxygen (hyperoxia) is one of few available options to treat acute hypoxemia-related respiratory failure, as seen in the current coronavirus disease (COVID-19) pandemic. Although hyperoxia can cause acute lung injury through increased production of superoxide anion (O2•-), the choice of high-concentration oxygen administration has become a necessity in critical care. The objective of this study was to test the hypothesis that UCP2 (uncoupling protein 2) has a major function of reducing O2•- generation in the lung in ambient air or in hyperoxia. Lung epithelial cells and wild-type; UCP2-/-; or transgenic, hTrx overexpression-bearing mice (Trx-Tg) were exposed to hyperoxia and O2•- generation was measured by using electron paramagnetic resonance, and lung injury was measured by using histopathologic analysis. UCP2 expression was analyzed by using RT-PCR analysis, Western blotting analysis, and RNA interference. The signal transduction pathways leading to loss of UCP2 expression were analyzed by using IP, phosphoprotein analysis, and specific inhibitors. UCP2 mRNA and protein expression were acutely decreased in hyperoxia, and these decreases were associated with a significant increase in O2•- production in the lung. Treatment of cells with rhTrx (recombinant human thioredoxin) or exposure of Trx-Tg mice prevented the loss of UCP2 protein and decreased O2•- generation in the lung. Trx is also required to maintain UCP2 expression in normoxia. Loss of UCP2 in UCP2-/- mice accentuated lung injury in hyperoxia. Trx activates the MKK4-p38MAPK (p38 mitogen-activated protein kinase)-PGC1α (PPARγ [peroxisome proliferator-activated receptor γ] coactivator 1α) pathway, leading to rescue of UCP2 and decreased O2•- generation in hyperoxia. Loss of UCP2 in hyperoxia is a major mechanism of O2•- production in the lung in hyperoxia. rhTrx can protect against lung injury in hyperoxia due to rescue of the loss of UCP2.


Asunto(s)
Pulmón/metabolismo , Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/terapia , Línea Celular , Humanos , Hiperoxia/metabolismo , Pulmón/citología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxígeno/toxicidad , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Transducción de Señal , Superóxidos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/farmacología , Proteína Desacopladora 2/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA