Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 24(1): 243, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147622

RESUMEN

BACKGROUND: Sex determination is the process whereby the bipotential embryonic gonads become committed to differentiate into testes or ovaries. In genetic sex determination (GSD), the sex determining trigger is encoded by a gene on the sex chromosomes, which activates a network of downstream genes; in mammals these include SOX9, AMH and DMRT1 in the male pathway, and FOXL2 in the female pathway. Although mammalian and avian GSD systems have been well studied, few data are available for reptilian GSD systems. RESULTS: We conducted an unbiased transcriptome-wide analysis of gonad development throughout differentiation in central bearded dragon (Pogona vitticeps) embryos with GSD. We found that sex differentiation of transcriptomic profiles occurs at a very early stage, before the gonad consolidates as a body distinct from the gonad-kidney complex. The male pathway genes dmrt1 and amh and the female pathway gene foxl2 play a key role in early sex differentiation in P. vitticeps, but the central player of the mammalian male trajectory, sox9, is not differentially expressed in P. vitticeps at the bipotential stage. The most striking difference from GSD systems of other amniotes is the high expression of the male pathway genes amh and sox9 in female gonads during development. We propose that a default male trajectory progresses if not repressed by a W-linked dominant gene that tips the balance of gene expression towards the female trajectory. Further, weighted gene expression correlation network analysis revealed novel candidates for male and female sex differentiation. CONCLUSION: Our data reveal that interpretation of putative mechanisms of GSD in reptiles cannot solely depend on lessons drawn from mammals.


Asunto(s)
Reptiles , Procesos de Determinación del Sexo , Diferenciación Sexual , Animales , Femenino , Masculino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Reptiles/genética , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Factor de Transcripción SOX9/genética
2.
Bioessays ; 45(2): e2200123, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529688

RESUMEN

The molecular mechanism of temperature-dependent sex determination (TSD) is a long-standing mystery. How is the thermal signal sensed, captured and transduced to regulate key sex genes? Although there is compelling evidence for pathways via which cells capture the temperature signal, there is no known mechanism by which cells transduce those thermal signals to affect gene expression. Here we propose a novel hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination). We postulate that the genome has capacity to remodel in response to temperature by changing 3D chromatin conformation, perhaps via temperature-sensitive transcriptional condensates. This could rewire enhancer-promoter interactions to alter the expression of key sex-determining genes. This hypothesis can accommodate monogenic or multigenic thermolabile sex-determining systems, and could be combined with upstream thermal sensing and transduction to the epigenome to commit gonadal fate.


Asunto(s)
Gónadas , Procesos de Determinación del Sexo , Procesos de Determinación del Sexo/genética , Cromatina , Temperatura , Regiones Promotoras Genéticas , Razón de Masculinidad
3.
Sci Adv ; 8(16): eabk0275, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35442724

RESUMEN

Sex determination and differentiation in reptiles are complex. In the model species, Pogona vitticeps, high incubation temperature can cause male to female sex reversal. To elucidate the epigenetic mechanisms of thermolabile sex, we used an unbiased genome-wide assessment of intron retention during sex reversal. The previously implicated chromatin modifiers (jarid2 and kdm6b) were two of three genes to display sex reversal-specific intron retention. In these species, embryonic intron retention resulting in C-terminally truncated jarid2 and kdm6b isoforms consistently occurs at low temperatures. High-temperature sex reversal is uniquely characterized by a high prevalence of N-terminally truncated isoforms of jarid2 and kdm6b, which are not present at low temperatures, or in two other reptiles with temperature-dependent sex determination. This work verifies that chromatin-modifying genes are involved in highly conserved temperature responses and can also be transcribed into isoforms with new sex-determining roles.

4.
BMC Genomics ; 23(1): 322, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459109

RESUMEN

BACKGROUND: In some vertebrate species, gene-environment interactions can determine sex, driving bipotential gonads to differentiate into either ovaries or testes. In the central bearded dragon (Pogona vitticeps), the genetic influence of sex chromosomes (ZZ/ZW) can be overridden by high incubation temperatures, causing ZZ male to female sex reversal. Previous research showed ovotestes, a rare gonadal phenotype with traits of both sexes, develop during sex reversal, leading to the hypothesis that sex reversal relies on high temperature feminisation to outcompete the male genetic cue. To test this, we conducted temperature switching experiments at key developmental stages, and analysed the effect on gonadal phenotypes using histology and transcriptomics. RESULTS: We found sexual fate is more strongly influenced by the ZZ genotype than temperature. Any exposure to low temperatures (28 °C) caused testes differentiation, whereas sex reversal required longer exposure to high temperatures. We revealed ovotestes exist along a spectrum of femaleness to male-ness at the transcriptional level. We found inter-individual variation in gene expression changes following temperature switches, suggesting both genetic sensitivity to, and the timing and duration of the temperature cue influences sex reversal. CONCLUSIONS: These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.


Asunto(s)
Lagartos , Animales , Femenino , Gónadas , Lagartos/genética , Masculino , Cromosomas Sexuales , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Temperatura
5.
Biol Reprod ; 106(1): 132-144, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34849582

RESUMEN

The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, have been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodeling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterized tissue specific expression and cellular localization patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.


Asunto(s)
Epigénesis Genética/fisiología , Lagartos/fisiología , Procesos de Determinación del Sexo/fisiología , Temperatura , Animales , Ensamble y Desensamble de Cromatina/genética , Femenino , Gónadas/química , Histonas/análisis , Inmunohistoquímica/métodos , Inmunohistoquímica/veterinaria , Histona Demetilasas con Dominio de Jumonji/análisis , Lagartos/genética , Masculino , Metilación , Proteínas de Unión al ARN/análisis , Procesos de Determinación del Sexo/genética
6.
Sex Dev ; 15(1-3): 148-156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111872

RESUMEN

Sex reversal is the process by which an individual develops a phenotypic sex that is discordant with its chromosomal or genotypic sex. It occurs in many lineages of ectothermic vertebrates, such as fish, amphibians, and at least one agamid and one scincid reptile species. Sex reversal is usually triggered by an environmental cue that alters the genetically determined process of sexual differentiation, but it can also be caused by exposure to exogenous chemicals, hormones, or pollutants. Despite the occurrence of both temperature-dependent sex determination (TSD) and genetic sex determination (GSD) broadly among reptiles, only 2 species of squamates have thus far been demonstrated to possess sex reversal in nature (GSD with overriding thermal influence). The lack of species with unambiguously identified sex reversal is not necessarily a reflection of a low incidence of this trait among reptiles. Indeed, sex reversal may be relatively common in reptiles, but little is known of its prevalence, the mechanisms by which it occurs, or the consequences of sex reversal for species in the wild under a changing climate. In this review, we present a roadmap to the discovery of sex reversal in reptiles, outlining the various techniques that allow new occurrences of sex reversal to be identified, the molecular mechanisms that may be involved in sex reversal and how to identify them, and approaches for assessing the impacts of sex reversal in wild populations. We discuss the evolutionary implications of sex reversal and use the central bearded dragon (Pogona vitticeps) and the eastern three-lined skink (Bassiana duperreyi) as examples of how species with opposing patterns of sex reversal may be impacted differently by our rapidly changing climate. Ultimately, this review serves to highlight the importance of understanding sex reversal both in the laboratory and in wild populations and proposes practical solutions to foster future research.


Asunto(s)
Lagartos , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Lagartos/genética , Prevalencia , Reptiles/genética , Procesos de Determinación del Sexo/genética , Temperatura
7.
PLoS Genet ; 17(4): e1009465, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857129

RESUMEN

How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.


Asunto(s)
Lagartos/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Transcriptoma/genética , Animales , Femenino , Lagartos/crecimiento & desarrollo , Masculino , Análisis para Determinación del Sexo/métodos , Temperatura , Transcripción Genética/genética
8.
Proc Biol Sci ; 288(1943): 20202819, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33467998

RESUMEN

Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene-environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.


Asunto(s)
Lagartos , Procesos de Determinación del Sexo , Animales , Femenino , Lagartos/genética , Análisis para Determinación del Sexo , Procesos de Determinación del Sexo/genética , Razón de Masculinidad , Temperatura
9.
Biol Rev Camb Philos Soc ; 95(3): 680-695, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32027076

RESUMEN

Many reptiles and some fish determine offspring sex by environmental cues such as incubation temperature. The mechanism by which environmental signals are captured and transduced into specific sexual phenotypes has remained unexplained for over 50 years. Indeed, environmental sex determination (ESD) has been viewed as an intractable problem because sex determination is influenced by a myriad of genes that may be subject to environmental influence. Recent demonstrations of ancient, conserved epigenetic processes in the regulatory response to environmental cues suggest that the mechanisms of ESD have a previously unsuspected level of commonality, but the proximal sensor of temperature that ultimately gives rise to one sexual phenotype or the other remains unidentified. Here, we propose that in ESD species, environmental cues are sensed by the cell through highly conserved ancestral elements of calcium and redox (CaRe) status, then transduced to activate ubiquitous signal transduction pathways, or influence epigenetic processes, ultimately to drive the differential expression of sex genes. The early evolutionary origins of CaRe regulation, and its essential role in eukaryotic cell function, gives CaRe a propensity to be independently recruited for diverse roles as a 'cellular sensor' of environmental conditions. Our synthesis provides the first cohesive mechanistic model connecting environmental signals and sex determination pathways in vertebrates, providing direction and a framework for developing targeted experimentation.


Asunto(s)
Calcio/metabolismo , Ambiente , Procesos de Determinación del Sexo/fisiología , Vertebrados/fisiología , Empalme Alternativo/fisiología , Animales , Evolución Biológica , Femenino , Respuesta al Choque Térmico/fisiología , Masculino , FN-kappa B/fisiología , Oxidación-Reducción , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología
10.
Sci Rep ; 8(1): 14892, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291276

RESUMEN

Vertebrate sex differentiation follows a conserved suite of developmental events: the bipotential gonads differentiate and shortly thereafter sex specific traits become dimorphic. However, this may not apply to squamates, a diverse vertebrate lineage comprising of many species with thermosensitive sexual development. Of the three species with data on the relative timing of gonad differentiation and genital dimorphism, the females of two (Niveoscincus ocellatus and Barisia imbricata) exhibit a phase of temporary pseudohermaphroditism or TPH (gonads have differentiated well before genital dimorphism). We report a third example of TPH in Pogona vitticeps, an agamid with temperature-induced male to female sex reversal. These findings suggest that for female squamates, genital and gonad development may not be closely synchronised, so that TPH may be common. We further observed a high frequency of ovotestes, a usually rare gonadal phenotype characterised by a mix of male and female structures, exclusively associated with temperature-induced sex reversal. We propose that ovotestes are evidence of a period of antagonism between male and female sex-determining pathways during sex reversal. Female sexual development in squamates is considerably more complex than has been appreciated, providing numerous avenues for future exploration of the genetic and hormonal cues that govern sexual development.


Asunto(s)
Lagartos/crecimiento & desarrollo , Animales , Femenino , Gónadas/crecimiento & desarrollo , Gónadas/ultraestructura , Masculino , Procesos de Determinación del Sexo , Diferenciación Sexual , Temperatura
11.
Evodevo ; 8: 25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225770

RESUMEN

BACKGROUND: The development of male- or female-specific phenotypes in squamates is typically controlled by either temperature-dependent sex determination (TSD) or chromosome-based genetic sex determination (GSD). However, while sex determination is a major switch in individual phenotypic development, it is unknownhow evolutionary transitions between GSD and TSD might impact on the evolution of squamate phenotypes, particularly the fast-evolving and diverse genitalia. Here, we take the unique opportunity of studying the impact of both sex determination mechanisms on the embryological development of the central bearded dragon (Pogona vitticeps). This is possible because of the transitional sex determination system of this species, in which genetically male individuals reverse sex at high incubation temperatures. This can trigger the evolutionary transition of GSD to TSD in a single generation, making P. vitticeps an ideal model organism for comparing the effects of both sex determination processes in the same species. RESULTS: We conducted four incubation experiments on 265 P. vitticeps eggs, covering two temperature regimes ("normal" at 28 °C and "sex reversing" at 36 °C) and the two maternal sexual genotypes (concordant ZW females or sex-reversed ZZ females). From this, we provide the first detailed staging system for the species, with a focus on genital and limb development. This was augmented by a new sex chromosome identification methodology for P. vitticeps that is non-destructive to the embryo. We found a strong correlation between embryo age and embryo stage. Aside from faster growth in 36 °C treatments, body and external genital development was entirely unperturbed by temperature, sex reversal or maternal sexual genotype. Unexpectedly, all females developed hemipenes (the genital phenotype of adult male P. vitticeps), which regress close to hatching. CONCLUSIONS: The tight correlation between embryo age and embryo stage allows the precise targeting of specific developmental periods in the emerging field of molecular research on P. vitticeps. The stability of genital development in all treatments suggests that the two sex-determining mechanisms have little impact on genital evolution, despite their known role in triggering genital development. Hemipenis retention in developing female P. vitticeps, together with frequent occurrences of hemipenis-like structures during development in other squamate species, raises the possibility of a bias towards hemipenis formation in the ancestral developmental programme for squamate genitalia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA