Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Zookeys ; 1173: 145-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577148

RESUMEN

With the recent advance in molecular phylogenetics focused on the leaf insects (Phasmatodea, Phylliidae), gaps in knowledge are beginning to be filled. Yet, shortcomings are also being highlighted, for instance, the unveiling of numerous undescribed phylliid species. Here, some of these taxa are described, including Phylliumiyadaonsp. nov. from Mindoro Island, Philippines; Phylliumsamarensesp. nov. from Samar Island, Philippines; Phylliumortizisp. nov. from Mindanao Island, Philippines; Pulchriphylliumheraclessp. nov. from Vietnam; Pulchriphylliumdelisleisp. nov. from South Kalimantan, Indonesia; and Pulchriphylliumbhaskaraisp. nov. from Java, Indonesia. Several additional specimens of these species together with a seventh species described herein, Pulchriphylliumanangusp. nov. from southwestern India, were incorporated into a newly constructed phylogenetic tree. Additionally, two taxa that were originally described as species, but in recent decades have been treated as subspecies, are elevated back to species status to reflect their unique morphology and geographic isolation, creating the following new combinations: Pulchriphylliumscythe (Gray, 1843) stat. rev., comb. nov. from Bangladesh and northeastern India, and Pulchriphylliumcrurifolium (Audinet-Serville, 1838) stat. rev., comb. nov. from the Seychelles islands. Lectotype specimens are also designated for Pulchriphylliumscythe (Gray, 1843) stat. rev., comb. nov. and Pulchriphylliumcrurifolium (Audinet-Serville, 1838) stat. rev., comb. nov. from original type material.

2.
Syst Biol ; 71(3): 526-546, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34324671

RESUMEN

Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here, we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, nonmodel insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression. [Gene flow; Odonata; phylogenomics; reticulate evolution.].


Asunto(s)
Odonata , Animales , Genoma , Insectos/anatomía & histología , Odonata/anatomía & histología , Odonata/genética , Filogenia
3.
Sci Rep ; 11(1): 622, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436653

RESUMEN

Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Ramp sequences were compared from 247 vertebrates (114 Mammalian and 133 non-mammalian), where the presence and absence of ramp sequences was analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life synthetic tree to determine the number of parallelisms and reversals that occurred, and those results were compared to random permutations. Parsimony and maximum likelihood analyses of the presence and absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, 81% of vertebrate mammalian ramps and 81.2% of other vertebrate ramps had less parallelisms and reversals than the mean from 1000 randomly permuted trees. A chi-square analysis of completely orthologous ramp sequences resulted in a p-value < 0.001 as compared to random chance. Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches if many orthologs are taken into account. However, phylogenomic methods utilizing few orthologs should be cautious in incorporating ramp sequences because individual ramp sequences may provide conflicting signals.


Asunto(s)
Uso de Codones , Codón , Filogenia , ARN de Transferencia/genética , Vertebrados/clasificación , Vertebrados/genética , Animales
4.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151138

RESUMEN

The plant growth-promoting rhizobacterium Delftia acidovorans RAY209 is capable of establishing strong root attachment during early plant development at 7 days post-inoculation. The transcriptional response of RAY209 was measured using RNA-seq during early (day 2) and sustained (day 7) root colonization of canola plants, capturing RAY209 differentiation from a medium-suspended cell state to a strongly root-attached cell state. Transcriptomic data was collected in an identical manner during RAY209 interaction with soybean roots to explore the putative root colonization response to this globally relevant crop. Analysis indicated there is an increased number of significantly differentially expressed genes between medium-suspended and root-attached cells during early soybean root colonization relative to sustained colonization, while the opposite temporal pattern was observed for canola root colonization. Regardless of the plant host, root-attached RAY209 cells exhibited the least amount of differential gene expression between early and sustained root colonization. Root-attached cells of either canola or soybean roots expressed high levels of a fasciclin gene homolog encoding an adhesion protein, as well as genes encoding hydrolases, multiple biosynthetic processes, and membrane transport. Notably, while RAY209 ABC transporter genes of similar function were transcribed during attachment to either canola or soybean roots, several transporter genes were uniquely differentially expressed during colonization of the respective plant hosts. In turn, both canola and soybean plants expressed genes encoding pectin lyase and hydrolases - enzymes with purported function in remodelling extracellular matrices in response to RAY209 colonization. RAY209 exhibited both a core regulatory response and a planthost-specific regulatory response to root colonization, indicating that RAY209 specifically adjusts its cellular activities to adapt to the canola and soybean root environments. This transcriptomic data defines the basic RAY209 response as both a canola and soybean commercial crop and seed inoculant.


Asunto(s)
Adaptación Fisiológica/genética , Brassica napus/microbiología , Delftia acidovorans/genética , Glycine max/microbiología , Raíces de Plantas/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Brassica napus/crecimiento & desarrollo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Delftia acidovorans/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Desarrollo de la Planta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Glycine max/crecimiento & desarrollo
5.
PLoS One ; 15(5): e0232260, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32401752

RESUMEN

Identical codon pairing and co-tRNA codon pairing increase translational efficiency within genes when two codons that encode the same amino acid are translated by the same tRNA before it diffuses from the ribosome. We examine the phylogenetic signal in both identical and co-tRNA codon pairing across 23 428 species using alignment-free and parsimony methods. We determined that conserved codon pairing typically has a smaller window size than the length of a ribosome, and codon pairing tracks phylogenies across various taxonomic groups. We report a comprehensive analysis of codon pairing, including the extent to which each codon pairs. Our parsimony method generally recovers phylogenies that are more congruent with the established phylogenies than our alignment-free method. However, four of the ten taxonomic groups did not have sufficient orthologous codon pairings and were therefore analyzed using only the alignment-free methods. Since the recovered phylogenies using only codon pairing largely match phylogenies from the Open Tree of Life and the NCBI taxonomy, and are comparable to trees recovered by other algorithms, we propose that codon pairing biases are phylogenetically conserved and should be considered in conjunction with other phylogenomic techniques.


Asunto(s)
Codón/genética , Secuencia Conservada/genética , Filogenia , ARN de Transferencia/genética , Ribosomas/genética
6.
Mol Phylogenet Evol ; 144: 106697, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31805345

RESUMEN

Using parsimony, we analyzed codon usages across 12,337 species and 25,727 orthologous genes to rank specific genes and codons according to their phylogenetic signal. We examined each codon within each ortholog to determine the codon usage for each species. In total, 890,814 codons were parsimony informative. Next, we compared species that used a codon with species that did not use the codon. We assessed each codon's congruence with species relationships provided in the Open Tree of Life (OTL) and determined the statistical probability of observing these results by random chance. We determined that 25,771 codons had no parallelisms or reversals when mapped to the OTL. Codon usages from orthologous genes spanning many species were 1109× more likely to be congruent with species relationships in the OTL than would be expected by random chance. Using the OTL as a reference, we show that codon usage is phylogenetically conserved within orthologous genes in archaea, bacteria, plants, mammals, and other vertebrates. We also show how to use our provided framework to test different tree hypotheses by confirming the placement of turtles as sister taxa to archosaurs.


Asunto(s)
Uso de Codones/fisiología , Codón/genética , Bases de Datos Genéticas , Especiación Genética , Filogenia , Animales , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Secuencia Conservada , Bases de Datos Genéticas/estadística & datos numéricos , Mamíferos/clasificación , Mamíferos/genética , Plantas/clasificación , Plantas/genética , Homología de Secuencia , Tortugas/clasificación , Tortugas/genética , Vertebrados/clasificación , Vertebrados/genética
7.
PeerJ ; 7: e6984, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198636

RESUMEN

BACKGROUND: Common phylogenomic approaches for recovering phylogenies are often time-consuming and require annotations for orthologous gene relationships that are not always available. In contrast, alignment-free phylogenomic approaches typically use structure and oligomer frequencies to calculate pairwise distances between species. We have developed an approach to quickly calculate distances between species based on codon aversion. METHODS: Utilizing a novel alignment-free character state, we present CAM, an alignment-free approach to recover phylogenies by comparing differences in codon aversion motifs (i.e., the set of unused codons within each gene) across all genes within a species. Synonymous codon usage is non-random and differs between organisms, between genes, and even within a single gene, and many genes do not use all possible codons. We report a comprehensive analysis of codon aversion within 229,742,339 genes from 23,428 species across all kingdoms of life, and we provide an alignment-free framework for its use in a phylogenetic construct. For each species, we first construct a set of codon aversion motifs spanning all genes within that species. We define the pairwise distance between two species, A and B, as one minus the number of shared codon aversion motifs divided by the total codon aversion motifs of the species, A or B, containing the fewest motifs. This approach allows us to calculate pairwise distances even when substantial differences in the number of genes or a high rate of divergence between species exists. Finally, we use neighbor-joining to recover phylogenies. RESULTS: Using the Open Tree of Life and NCBI Taxonomy Database as expected phylogenies, our approach compares well, recovering phylogenies that largely match expected trees and are comparable to trees recovered using maximum likelihood and other alignment-free approaches. Our technique is much faster than maximum likelihood and similar in accuracy to other alignment-free approaches. Therefore, we propose that codon aversion be considered a phylogenetically conserved character that may be used in future phylogenomic studies. AVAILABILITY: CAM, documentation, and test files are freely available on GitHub at https://github.com/ridgelab/cam.

8.
Nat Ecol Evol ; 2(9): 1386-1392, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104753

RESUMEN

Pterosaurs are the oldest known powered flying vertebrates. Originating in the Late Triassic, they thrived to the end of the Cretaceous. Triassic pterosaurs are extraordinarily rare and all but one specimen come from marine deposits in the Alps. A new comparatively large (wing span >150 cm) pterosaur, Caelestiventus hanseni gen. et sp. nov., from Upper Triassic desert deposits of western North America preserves delicate structural and pneumatic details not previously known in early pterosaurs, and allows a reinterpretation of crushed Triassic specimens. It shows that the earliest pterosaurs were geographically widely distributed and ecologically diverse, even living in harsh desert environments. It is the only record of desert-dwelling non-pterodactyloid pterosaurs and predates all known desert pterosaurs by more than 65 Myr. A phylogenetic analysis shows it is closely allied with Dimorphodon macronyx from the Early Jurassic of Britain.


Asunto(s)
Dinosaurios/anatomía & histología , Dinosaurios/genética , Animales , Huesos/anatomía & histología , Clima Desértico , Fósiles , Filogenia , Utah
9.
Zookeys ; (657): 67-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28331409

RESUMEN

Lagaropsylla signata (Wahlgren, 1903), previously known only from the Island of Java, Indonesia is redescribed and reported for the first time in Deer Cave, Gunung Mulu National Park, Sarawak, Malaysia (west coast of Borneo). Many were found clinging to the earwig Arixenia esau Jordan, 1909. A similar account of a phoretic flea (Lagaropsylla turba Smit, 1958) on the same species of cave-dwelling earwig has been reported in peninsular Malaysia in a well-documented association with the hairless naked bulldog bat, Cheiromeles torquatus Horsfield, 1824. The association of Lagaropsylla signata with Arixenia esau is parallel to the evolution and co-existence with bats in Deer Cave just as in the case of Lagaropsylla turba, Arixenia esau, and Cheiromeles torquatus. The evidence suggests that Lagaropsylla turba and Lagaropsylla signata are obligate phoretic parasites whose survival depends on Arixenia esau to access a bat host. Arixenia esau is reported for the first time in Deer Cave and the occurrence of Lagaropsylla signata on the island of Borneo represented a new record, previously being found only on the island of Java. Images of Lagaropsylla signata attached to Arixenia esau are provided. Xeniaria jacobsoni (Burr, 1912), often associated with Arixenia esau in other geographical areas, was not present in the material examined from Deer Cave. The natural history of the earwig genera Arixenia Jordan, 1909 and Xeniaria Maa, 1974 are discussed and summarized relative to their associations with phoretic fleas and their bat hosts.

10.
Cladistics ; 33(5): 545-556, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34706488

RESUMEN

Although many studies have documented codon usage bias in different species, the importance of codon usage in a phylogenetic framework remains largely unknown. We demonstrate that a phylogenetic signal is present in the codon usage and non-usage biases of 17 717 orthologues evaluated across 72 tetrapod species using a simple parsimony analysis of a binary matrix of codon characters. Phylogenies estimated using stop codons were more congruent with previous hypotheses than phylogenies based on any other single codon or a combination of codons. Although each codon is present in every species, specific genes have different codon preferences and may or may not use every possible codon. This observation allowed us to map the pattern of codon usage and non-usage across the topology. These results suggest that codon usage is phylogenetically conserved across shallow and deep levels within tetrapods.

11.
Mol Phylogenet Evol ; 107: 564-575, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27998815

RESUMEN

Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis.


Asunto(s)
Luciérnagas/clasificación , Luminiscencia , Filogenia , Animales , Teorema de Bayes , Modelos Teóricos , Alineación de Secuencia
12.
Mol Phylogenet Evol ; 100: 382-390, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27033951

RESUMEN

Dermaptera is a relatively small order of free-living insects that typically feed on detritus and other plant material. However, two earwig lineages - Arixeniidae and Hemimeridae - are epizoic on Cheiromeles bats and Beamys and Cricetomys rats respectively. Both of these epizoic families are comprised of viviparous species. The monophyly of these epizoic lineages and their placement within dermapteran phylogeny has remained unclear. A phylogenetic analyses was performed on a diverse sample of 47 earwig taxa for five loci (18S rDNA, 28S rDNA, COI, Histone 3, and Tubulin Alpha I). Our results support two independent origins of the epizoic lifestyle within Dermaptera, with Hemimeridae and Arixeniidae each derived from a different lineage of Spongiphoridae. Our analyses places Marava, a genus of spongiphorids that includes free-living but viviparous earwigs, as sister group to Arixeniidae, suggesting that viviparity evolved prior to the shift to the epizoic lifestyle. Additionally, our results support the monophyly of Forficulidae and Chelisochidae and the paraphyly of Labiduridae, Pygidicranidae, Spongiphoridae, and Anisolabididae.


Asunto(s)
Insectos/clasificación , Animales , ADN Ribosómico/genética , Evolución Molecular , Femenino , Genes de Insecto , Insectos/anatomía & histología , Insectos/genética , Masculino , Tipificación de Secuencias Multilocus , Filogenia , Viviparidad de Animales no Mamíferos
13.
BMC Evol Biol ; 16: 9, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26754250

RESUMEN

Recently, a set of publications described flea fossils from Jurassic and Early Cretaceous geological strata in northeastern China, which were suggested to have parasitized feathered dinosaurs, pterosaurs, and early birds or mammals. In support of these fossils being fleas, a recent publication in BMC Evolutionary Biology described the extended abdomen of a female fossil specimen as due to blood feeding.We here comment on these findings, and conclude that the current interpretation of the evolutionary trajectory and ecology of these putative dinosaur fleas is based on appeal to probability, rather than evidence. Hence, their taxonomic positioning as fleas, or stem fleas, as well as their ecological classification as ectoparasites and blood feeders is not supported by currently available data.


Asunto(s)
Dinosaurios/parasitología , Siphonaptera , Animales , Evolución Biológica , China , Femenino , Fósiles , Probabilidad , Siphonaptera/clasificación
14.
Mol Phylogenet Evol ; 90: 129-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25987528

RESUMEN

Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae as the earliest divergence, followed by Stephanocircidae. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), suggesting that the common ancestor of extant Siphonaptera diversified during the Cretaceous. However, most of the intraordinal divergence into extant lineages took place after the K-Pg boundary. Ancestral states of host association and biogeographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed. Major extant flea families evolved in connection to post K-Pg diversification of Placentalia. The association of fleas with monotremes and birds is likely due to later secondary host association. These results suggest caution in casually interpreting recently discovered Mesozoic fossil "dinosaur fleas" of Northeast Asia as part of what we currently consider Siphonaptera.


Asunto(s)
Evolución Biológica , Siphonaptera/clasificación , Animales , Teorema de Bayes , Fósiles , Filogenia
15.
Cladistics ; 31(6): 621-651, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34753270

RESUMEN

Orthoptera is the most diverse order among the polyneopteran groups and includes familiar insects, such as grasshoppers, crickets, katydids, and their kin. Due to a long history of conflicting classification schemes based on different interpretations of morphological characters, the phylogenetic relationships within Orthoptera are poorly understood and its higher classification has remained unstable. In this study, we establish a robust phylogeny of Orthoptera including 36 of 40 families representing all 15 currently recognized superfamilies and based on complete mitochondrial genomes and four nuclear loci, in order to test previous phylogenetic hypotheses and to provide a framework for a natural classification and a reference for studying the pattern of divergence and diversification. We find strong support for monophyletic suborders (Ensifera and Caelifera) as well as major superfamilies. Our results corroborate most of the higher-level relationships previously proposed for Caelifera, but suggest some novel relationships for Ensifera. Using fossil calibrations, we provide divergence time estimates for major orthopteran lineages and show that the current diversity has been shaped by dynamic shifts of diversification rates at different geological times across different lineages. We also show that mitochondrial tRNA gene orders have been relatively stable throughout the evolutionary history of Orthoptera, but a major tRNA gene rearrangement occurred in the common ancestor of Tetrigoidea and Acridomorpha, thereby representing a robust molecular synapomorphy, which has persisted for 250 Myr.

16.
PLoS One ; 9(10): e110508, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333882

RESUMEN

Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/genética , Ortópteros/metabolismo , Animales , Secuencia de Bases , Núcleo Celular/genética , ADN Mitocondrial/química , ADN Mitocondrial/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
17.
Mol Ecol Resour ; 14(4): 882, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24751167

RESUMEN

This article documents the public availability of transcriptome sequence data and assembled, annotated unigenes for the marmot flea, Oropsylla silantiewi.(1.)


Asunto(s)
Siphonaptera/genética , Transcriptoma , Animales , Bases de Datos de Ácidos Nucleicos
18.
Mol Phylogenet Evol ; 69(3): 1120-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891949

RESUMEN

The phylogenetic relationships of Tettigoniidae (katydids and bush-crickets) were inferred using molecular sequence data. Six genes (18S rDNA, 28S rDNA, Cytochrome Oxidase II, Histone 3, Tubulin Alpha I, and Wingless) were sequenced for 135 ingroup taxa representing 16 of the 19 extant katydid subfamilies. Five subfamilies (Tettigoniinae, Pseudophyllinae, Mecopodinae, Meconematinae, and Listroscelidinae) were found to be paraphyletic under various tree reconstruction methods (Maximum Likelihood, Bayesisan Inference and Maximum Parsimony). Seven subfamilies - Conocephalinae, Hetrodinae, Hexacentrinae, Saginae, Phaneropterinae, Phyllophorinae, and Lipotactinae - were each recovered as well-supported monophyletic groups. We mapped the small and exposed thoracic auditory spiracle (a defining character of the subfamily Pseudophyllinae) and found it to be homoplasious. We also found the leaf-like wings of katydids have been derived independently in at least six lineages.


Asunto(s)
Evolución Biológica , Ortópteros/clasificación , Filogenia , Alas de Animales/anatomía & histología , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Marcadores Genéticos , Funciones de Verosimilitud , Modelos Genéticos , Ortópteros/anatomía & histología , Ortópteros/genética , Análisis de Secuencia de ADN
19.
Mol Phylogenet Evol ; 67(2): 494-508, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23454468

RESUMEN

One of the main challenges in analyzing multi-locus phylogenomic data is to find an optimal data partitioning strategy to account for variable evolutionary histories of different loci for any given dataset. Although a number of studies have addressed the issue of data partitioning in a Bayesian phylogenetic framework, such studies in a maximum likelihood framework are comparatively lacking. Furthermore, a rigorous statistical exploration of possible data partitioning schemes has not been applied to mitochondrial genome (mtgenome) data, which provide a complex, but manageable platform for addressing various challenges in analyzing phylogenomic data. In this study, we investigate the issue of data partitioning in the maximum likelihood framework in the context of the mitochondrial phylogenomics of an orthopteran superfamily Acridoidea (Orthoptera: Caelifera). The present study analyzes 34 terminals representing all 8 superfamilies within Caelifera, which includes newly sequenced partial or complete mtgenomes for 11 families. Using a new partition-selection method implemented in the software PartitionFinder, we compare a large number of data partitioning schemes in an attempt to identify the most effective method of analyzing the mtgenome data. We find that the best-fit partitioning scheme selected by PartitionFinder is superior to any a priori schemes commonly utilized in mitochondrial phylogenomics. We also show that over-partitioning is often detrimental to phylogenetic reconstruction. A comparative analysis of mtgenome structures finds that the tRNA gene rearrangement between cytochrome c oxidase subunit II and ATP synthase protein 8 does not occur in the most basal caeliferan lineage Tridactyloidea, suggesting that this gene rearrangement must have evolved at least in the common ancestor of Tetrigoidea and Acridomorpha. We find that mtgenome data contain sufficient phylogenetic information to broadly resolve the relationships across Acridomorpha and Acridoidea.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Ortópteros , Filogenia , Algoritmos , Animales , Teorema de Bayes , Genoma Mitocondrial , Ortópteros/clasificación , Ortópteros/genética , Análisis de Secuencia de ADN , Programas Informáticos
20.
Cladistics ; 29(6): 643-662, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34798763

RESUMEN

Inadvertent coamplification of nuclear mitochondrial pseudogenes (numts) is a serious problem in mitochondrial systematics, but numts can also be a valuable source of information because they represent ancient forms of mtDNA. We present a conceptual framework of numt accumulation, which states that in a given species there can be two types of numts, synaponumts and autaponumts, resulting from integration occurring respectively before and after a speciation event. In a given clade, a species that diverged early can only have its own autaponumts as well as synaponumts that were already present in the genome of the last common ancestor. A species that diverged more recently may, however, have many different synaponumts integrated at each different divergence as well as its own autaponumts. Therefore it is possible to decipher the evolutionary history of a species based on the phylogenetic distribution of numts in a simultaneous analysis of numts and extant mtDNA. In this study, we test this idea empirically in the context of addressing a controversial question regarding the biogeography of the grasshopper genus Schistocerca Stål (Orthoptera: Acrididae), based on numts of the cytochrome c oxidase subunit I (COI) gene. We find that our empirical data can be explained adequately by our conceptual framework, and that the phylogenetic distribution of COI numts reveals intricate evolutionary histories about past speciation events that are otherwise difficult to detect using conventional markers. Our study strongly favours the Old World origin of the desert locust, Schistocerca gregaria and the New World Schistocerca species are descendants from an ancestral gregaria-like species that colonized the New World via westward transatlantic flight. However, the phylogenetic distribution of S. gregaria numts raises a distinct possibility that there might have been multiple founding events from Africa to America to give rise to the present-day diversity of the genus. This is a case study for a creative use of numts as molecular fossils, and we demonstrate that numts provide an interesting and powerful phylogenetic signal, much more than what extant mtDNA or nuclear gene sequences might be able to provide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA