Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Environ Pollut ; 338: 122721, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838319

RESUMEN

Currently, severe environmental issues have led to a great transition in the automotive industry from internal combustion engine vehicles to electric vehicles, but this transition will take time more than 10 years, which still requires the use of internal combustion engine vehicles. However, these vehicles emit a significant amount of hydrocarbons, in addition to nitrogen oxides (NOx), due to incomplete fuel combustion. They contribute to the formation of photochemical smog when they react with NOx in the presence of sunlight. To effectively remove these hydrocarbons from the exhaust gas of turbo-gasoline engines or diesel engines, we investigated the abatement of propane and iso-pentane, two typical hydrocarbons. In particular, we studied commercial Pd catalysts and revealed how the Pd loading and aging process simulating 4k and 100k mileage affected hydrocarbon abatement abilities, and their phases were identified using characterization technique, including CO chemisorption, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). We also suggested the reaction pathway for the complete oxidation of propane over Pd catalyst based on the reaction orders of propane and oxygen: Propane adsorbs on O atoms of PdO, and the kinetically relevant C-H bond cleavage step occurs by the interaction with abundant neighboring O atoms of PdO. Finally, the propane and iso-pentane abatement ability of the Pd catalyst aged for 100k mileage were evaluated under realistic exhaust gas conditions, and the effect of each gas component in the realistic exhaust gas was identified; water inhibits the catalytic reaction of hydrocarbons by occupying the active sites, whereas NO catalyzes the hydrocarbon oxidation reaction by either changing the reaction pathway or active sites under fuel-lean conditions. These findings enable us to effectively reduce environmental pollution and facilitate a smoother transition from internal combustion engine vehicles to electric vehicles.


Asunto(s)
Pentanos , Esmog , Propano , Hidrocarburos/análisis , Emisiones de Vehículos/análisis , Gasolina/análisis
2.
Science ; 353(6295): 150-4, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387946

RESUMEN

Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA