Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Magn Reson Imaging ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058248

RESUMEN

BACKGROUND: Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of 2H-labeled substrates. DMI after [6,6'-2H2]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-2H2]glucose doses on DMI brain data is not well known. PURPOSE: To investigate three different [6,6'-2H2]glucose doses for DMI in the human brain at 7 T. STUDY TYPE: Prospective. POPULATION: Six healthy participants (age: 28 ± 8 years, male/female: 3/3). FIELD STRENGTH/SEQUENCE: 7 T, 3D 2H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence. ASSESSMENT: Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-2H2]glucose on two occasions and underwent consecutive 2H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma 2H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-2H2]glucose (part-2). STATISTICAL TEST: Mean plasma 2H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain 2H-Glc and brain 2H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05. RESULTS: Between 60 and 100 minutes after ingesting [6,6'-2H2]glucose, plasma 2H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain 2H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain 2H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma 2H-Glc APE, brain 2H-Glc, and brain 2H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-2H2]glucose. DATA CONCLUSION: Brain 2H-Glucose and brain 2H-Glutamate/Glutamine showed to be [6,6'-2H2]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, 2H-Glucose and 2H-Glutamate/Glutamine signals in the brain. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

2.
NMR Biomed ; : e5195, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845018

RESUMEN

The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.

3.
NMR Biomed ; 37(6): e5122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369653

RESUMEN

Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p < 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p < 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.


Asunto(s)
Amidas , Neoplasias Encefálicas , Fantasmas de Imagen , Protones , Humanos , Niño , Masculino , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Adolescente , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Reproducibilidad de los Resultados , Preescolar
4.
Front Oncol ; 12: 810263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359414

RESUMEN

Objective: Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods: Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results: High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion: Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.

5.
Magn Reson Med ; 88(1): 71-82, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344600

RESUMEN

PURPOSE: Single-voxel MRS (SV MRS) requires robust volume localization as well as optimized crusher and phase-cycling schemes to reduce artifacts arising from signal outside the volume of interest. However, due to local magnetic field gradients (B0 inhomogeneities), signal that was dephased by the crusher gradients during acquisition might rephase, leading to artifacts in the spectrum. Here, we analyzed this mechanism, aiming to identify the source of signals arising from unwanted coherence pathways (spurious signals) in SV MRS from a B0 map. METHODS: We investigated all possible coherence pathways associated with imperfect localization in a semi-localized by adiabatic selective refocusing (semi-LASER) sequence for potential rephasing of signals arising from unwanted coherence pathways by a local magnetic field gradient. We searched for locations in the B0 map where the signal dephasing due to external (crusher) and internal (B0 ) field gradients canceled out. To confirm the mechanism, SV-MR spectra (TE = 31 ms) and 3D-CSI data with the same volume localization as the SV experiments were acquired from a phantom and 2 healthy volunteers. RESULTS: Our analysis revealed that potential sources of spurious signals were scattered over multiple locations throughout the brain. This was confirmed by 3D-CSI data. Moreover, we showed that the number of potential locations where spurious signals could originate from monotonically decreases with crusher strength. CONCLUSION: We proposed a method to identify the source of spurious signals in SV 1 H MRS using a B0 map. This can facilitate MRS sequence design to be less sensitive to experimental artifacts.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
6.
Artículo en Inglés | MEDLINE | ID: mdl-35321886

RESUMEN

INTRODUCTION: Impaired awareness of hypoglycemia, clinically reflected by the inability to timely detect hypoglycemia, affects approximately 25% of the people with type 1 diabetes. Both altered brain lactate handling and increased cerebral blood flow (CBF) during hypoglycemia appear to be involved in the pathogenesis of impaired awareness of hypoglycemia. Here we examine the effect of lactate on CBF during hypoglycemia. RESEARCH DESIGN AND METHODS: Nine people with type 1 diabetes and normal awareness of hypoglycemia underwent two hyperinsulinemic euglycemic-hypoglycemic (3.0 mmol/L) glucose clamps in a 3T MR system, once with sodium lactate infusion and once with sodium chloride infusion. Global and regional changes in CBF were determined using pseudocontinuous arterial spin labeling. RESULTS: Lactate (3.3±0.6 vs 0.9±0.2 mmol/L during lactate infusion vs placebo infusion, respectively) suppressed the counter-regulatory hormone responses to hypoglycemia. Global CBF increased considerably in response to intravenous lactate infusion but did not further increase during hypoglycemia. Lactate also blunted the hypoglycemia-induced regional redistribution of CBF towards the thalamus. CONCLUSIONS: Elevated lactate levels enhance global CBF and blunt the thalamic CBF response during hypoglycemia in patients with type 1 diabetes, mimicking observations of impaired awareness of hypoglycemia. These findings suggest that alteration of CBF associated with lactate may play a role in some aspects of the development of impaired awareness of hypoglycemia. TRIAL REGISTRATION NUMBER: NCT03730909.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Circulación Cerebrovascular/fisiología , Diabetes Mellitus Tipo 1/complicaciones , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemia/inducido químicamente , Ácido Láctico/efectos adversos
7.
Magn Reson Med ; 87(2): 872-883, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34520077

RESUMEN

PURPOSE: Current challenges of in vivo CEST imaging include overlapping signals from different pools. The overlap arises from closely resonating pools and/or the broad magnetization transfer contrast (MTC) from macromolecules. This study aimed to evaluate the feasibility of variable delay multipulse (VDMP) CEST to separately assess solute pools with different chemical exchange rates in the human brain in vivo, while mitigating the MTC. METHODS: VDMP saturation buildup curves were simulated for amines, amides, and relayed nuclear Overhauser effect. VDMP data were acquired from glutamate and bovine serum albumin phantoms, and from six healthy volunteers at 7T. For the in vivo data, MTC removal was performed via a three-pool Lorentzian fitting. Different B1 amplitudes and mixing times were used to evaluate CEST pools with different exchange rates. RESULTS: The results show the importance of removing MTC when applying VDMP in vivo and the influence of B1 for distinguishing different pools. Finally, the optimal B1 and mixing times to effectively saturate slow- and fast-exchanging components are also reported. Slow-exchanging amides and rNOE components could be distinguished when using B1 = 1 µT and tmix = 10 ms and 40 ms, respectively. Fast-exchanging components reached the highest saturation when using a B1 = 2.8 µT and tmix = 0 ms. CONCLUSION: VDMP is a powerful CEST-editing tool, exploiting chemical exchange-rate differences. After MTC removal, it allows separate assessment of slow- and fast-exchanging solute pools in in vivo human brain.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Amidas , Aminas , Encéfalo/diagnóstico por imagen , Humanos , Fantasmas de Imagen
8.
Front Neurol ; 12: 718423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557149

RESUMEN

The onco-metabolite 2-hydroxyglutarate (2HG), a biomarker of IDH-mutant gliomas, can be detected with 1H MR spectroscopy (1H-MRS). Recent studies showed measurements of 2HG at 7T with substantial gain in signal to noise ratio (SNR) and spectral resolution, offering higher specificity and sensitivity for 2HG detection. In this study, we assessed the sensitivity of semi-localized by adiabatic selective refocusing (sLASER) and J-difference MEsher-GArwood-semi-LASER (MEGA-sLASER) for 2HG detection at 7T. We performed spectral editing at long TE using a TE-optimized sLASER sequence (110 ms) and J-difference spectroscopy using MEGA-sLASER (TE = 74ms) in phantoms with different 2HG concentrations to assess the sensitivity of 2HG detection. The robustness of the methods against B0 inhomogeneity was investigated. Moreover, the performance of these two techniques was evaluated in four patients with IDH1-mutated glioma. In contrary to MEGA-sLASER, sLASER was able to detect 2HG concentration as low as 0.5 mM. In case of a composite phantom containing 2HG with overlapping metabolites, MEGA-sLASER provided a clean 2HG signal with higher fitting reliability (lower %CRLB). The results demonstrate that sLASER is more robust against field inhomogeneities and experimental or motion-related artifacts which promotes to adopt sLASER in clinical implementations.

9.
Front Oncol ; 11: 811425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35340697

RESUMEN

Objective: To summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and to highlight the latest bench-to-bedside developments. Methods: The current evidence regarding the potential for monitoring biomarkers was reviewed and individual modalities of metabolism and/or chemical composition imaging discussed. Perfusion, permeability, and microstructure imaging were similarly analyzed in Part 1 of this two-part review article and are valuable reading as background to this article. We appraise the clinic readiness of all the individual modalities and consider methodologies involving machine learning (radiomics) and the combination of MRI approaches (multiparametric imaging). Results: The biochemical composition of high-grade gliomas is markedly different from healthy brain tissue. Magnetic resonance spectroscopy allows the simultaneous acquisition of an array of metabolic alterations, with choline-based ratios appearing to be consistently discriminatory in treatment response assessment, although challenges remain despite this being a mature technique. Promising directions relate to ultra-high field strengths, 2-hydroxyglutarate analysis, and the use of non-proton nuclei. Labile protons on endogenous proteins can be selectively targeted with chemical exchange saturation transfer to give high resolution images. The body of evidence for clinical application of amide proton transfer imaging has been building for a decade, but more evidence is required to confirm chemical exchange saturation transfer use as a monitoring biomarker. Multiparametric methodologies, including the incorporation of nuclear medicine techniques, combine probes measuring different tumor properties. Although potentially synergistic, the limitations of each individual modality also can be compounded, particularly in the absence of standardization. Machine learning requires large datasets with high-quality annotation; there is currently low-level evidence for monitoring biomarker clinical application. Conclusion: Advanced MRI techniques show huge promise in treatment response assessment. The clinical readiness analysis highlights that most monitoring biomarkers require standardized international consensus guidelines, with more facilitation regarding technique implementation and reporting in the clinic.

10.
Diabetologia ; 62(6): 1065-1073, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31001674

RESUMEN

AIMS/HYPOTHESIS: Chronic hyperglycaemia in type 1 diabetes affects the structure and functioning of the brain, but the impact of recurrent hypoglycaemia is unclear. Changes in the neurochemical profile have been linked to loss of neuronal function. We therefore aimed to investigate the impact of type 1 diabetes and burden of hypoglycaemia on brain metabolite levels, in which we assumed the burden to be high in individuals with impaired awareness of hypoglycaemia (IAH) and low in those with normal awareness of hypoglycaemia (NAH). METHODS: We investigated 13 non-diabetic control participants, 18 individuals with type 1 diabetes and NAH and 13 individuals with type 1 diabetes and IAH. Brain metabolite levels were determined by analysing previously obtained 1H magnetic resonance spectroscopy data, measured under hyperinsulinaemic-euglycaemic conditions. RESULTS: Brain glutamate levels were higher in participants with diabetes, both with NAH (+15%, p = 0.013) and with IAH (+19%, p = 0.003), compared with control participants. Cerebral glutamate levels correlated with HbA1c levels (r = 0.40; p = 0.03) and correlated inversely (r = -0.36; p = 0.04) with the age at diagnosis of diabetes. Other metabolite levels did not differ between groups, apart from an increase in aspartate in IAH. CONCLUSIONS/INTERPRETATION: In conclusion, brain glutamate levels are elevated in people with type 1 diabetes and correlate with glycaemic control and age of disease diagnosis, but not with burden of hypoglycaemia as reflected by IAH. This suggests a potential role for glutamate as an early marker of hyperglycaemia-induced cerebral complications of type 1 diabetes. ClinicalTrials.gov NCT03286816; NCT02146404; NCT02308293.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Glutámico/metabolismo , Adulto , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemia/sangre , Hipoglucemia/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Adulto Joven
11.
Eur Child Adolesc Psychiatry ; 28(7): 1011-1022, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30680520

RESUMEN

Oppositional defiant disorder, conduct disorder (ODD/CD), and autism spectrum disorder (ASD) share poor empathic functioning and have been associated with impaired emotional processing. However, no previous studies directly compared similarities and differences in these processes for the two disorders. A two-choice emotional valence detection task requiring differentiation between positive, negative, and neutral IAPS pictures was administered to 52 adolescents (12-19 years) with ODD/CD, 52 with ASD and 24 typically developing individuals (TDI). Callous-unemotional (CU) traits were assessed by self- and parent reports using the Inventory of callous-unemotional traits. Main findings were that adolescents with ODD/CD or ASD both performed poorer than TDI in terms of accuracy, yet only the TDI-not both clinical groups-had relatively most difficulty in discriminating between positive versus neutral pictures compared to neutral-negative or positive-negative contrasts. Poorer performance was related to a higher level of CU traits. The results of the current study suggest youth with ODD/CD or ASD have a diminished ability to detect emotional valence which is not limited to facial expressions and is related to a higher level of CU traits. More specifically, youth with ODD/CD or ASD seem to have a reduced processing of positive stimuli and/or lack a 'positive perception bias' present in TDI that could either contribute to the symptoms and/or be a result of having the disorder and may contribute to the comorbidity of both disorders.


Asunto(s)
Déficit de la Atención y Trastornos de Conducta Disruptiva/psicología , Trastorno del Espectro Autista/psicología , Trastorno de la Conducta/psicología , Emociones/fisiología , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven
12.
J Cereb Blood Flow Metab ; 39(10): 1974-1982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29749805

RESUMEN

Administration of lactate during hypoglycemia suppresses symptoms and counterregulatory responses, as seen in patients with type 1 diabetes and impaired awareness of hypoglycemia (IAH), presumably because lactate can substitute for glucose as a brain fuel. Here, we examined whether lactate administration, in a dose sufficient to impair awareness of hypoglycemia, affects brain lactate levels in patients with normal awareness of hypoglycemia (NAH). Patients with NAH (n = 6) underwent two euglycemic-hypoglycemic clamps (2.8 mmol/L), once with sodium lactate infusion (NAH w|lac) and once with saline infusion (NAH w|placebo). Results were compared to those obtained during lactate administration in patients with IAH (n = 7) (IAH w|lac). Brain lactate levels were determined continuously with J-difference editing 1H-MRS. During lactate infusion, symptom and adrenaline responses to hypoglycemia were considerably suppressed in NAH. Infusion of lactate increased brain lactate levels modestly, but comparably, in both groups (mean increase in NAH w|lac: 0.12 ± 0.05 µmol/g and in IAH w|lac: 0.06 ± 0.04 µmol/g). The modest increase in brain lactate may suggest that the excess of lactate is immediately metabolized by the brain, which in turn may explain the suppressive effects of lactate on awareness of hypoglycemia observed in patients with NAH.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemia/tratamiento farmacológico , Ácido Láctico/sangre , Ácido Láctico/uso terapéutico , Adulto , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Humanos , Hipoglucemia/sangre , Hipoglucemia/metabolismo , Ácido Láctico/administración & dosificación , Ácido Láctico/metabolismo , Masculino , Adulto Joven
13.
Diabetes ; 66(12): 3105-3110, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28935628

RESUMEN

Since altered brain lactate handling has been implicated in the development of impaired awareness of hypoglycemia (IAH) in type 1 diabetes, the capacity to transport lactate into the brain during hypoglycemia may be relevant in its pathogenesis. High-intensity interval training (HIIT) increases plasma lactate levels. We compared the effect of HIIT-induced hyperlacticacidemia on brain lactate during hypoglycemia between 1) patients with type 1 diabetes and IAH, 2) patients with type 1 diabetes and normal awareness of hypoglycemia, and 3) healthy participants without diabetes (n = 6 per group). All participants underwent a hypoglycemic (2.8 mmol/L) clamp after performing a bout of HIIT on a cycle ergometer. Before HIIT (baseline) and during hypoglycemia, brain lactate levels were determined continuously with J-difference-editing 1H-MRS, and time curves were analyzed using nonlinear mixed-effects modeling. At the beginning of hypoglycemia (after HIIT), brain lactate levels were elevated in all groups but most pronounced in patients with IAH. During hypoglycemia, brain lactate decreased ∼30% below baseline in patients with IAH but returned to baseline levels and remained there in the other two groups. Our results support the concept of enhanced lactate transport as well as increased lactate oxidation in patients with type 1 diabetes and IAH.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ejercicio Físico , Hipoglucemia/metabolismo , Ácido Láctico/metabolismo , Adulto , Concienciación , Femenino , Humanos , Masculino , Adulto Joven
14.
MAGMA ; 30(6): 537-544, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28573461

RESUMEN

OBJECTIVE: J-difference editing is often used to select resonances of compounds with coupled spins in 1H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. MATERIALS AND METHODS: In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. RESULTS: In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. CONCLUSION: Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Adulto , Encéfalo/metabolismo , Femenino , Análisis de Fourier , Humanos , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/estadística & datos numéricos , Masculino , Relación Señal-Ruido , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
15.
Diabetes ; 66(7): 1990-1998, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28420673

RESUMEN

High-intensity interval training (HIIT) has gained increasing popularity in patients with diabetes. HIIT acutely increases plasma lactate levels. This may be important, since the administration of lactate during hypoglycemia suppresses symptoms and counterregulation while preserving cognitive function. We tested the hypothesis that, in the short term, HIIT reduces awareness of hypoglycemia and attenuates hypoglycemia-induced cognitive dysfunction. In a randomized crossover trial, patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), patients with impaired awareness of hypoglycemia (IAH), and healthy participants (n = 10 per group) underwent a hyperinsulinemic-hypoglycemic (2.6 mmol/L) clamp, either after a HIIT session or after seated rest. Compared with rest, HIIT reduced symptoms of hypoglycemia in patients with NAH but not in healthy participants or patients with IAH. HIIT attenuated hypoglycemia-induced cognitive dysfunction, which was mainly driven by changes in the NAH subgroup. HIIT suppressed cortisol and growth hormone responses, but not catecholamine responses to hypoglycemia. The present findings demonstrate that a single HIIT session rapidly reduces awareness of subsequent hypoglycemia in patients with type 1 diabetes and NAH, but does not in patients with IAH, and attenuates hypoglycemia-induced cognitive dysfunction. The role of exercise-induced lactate in mediating these effects, potentially serving as an alternative fuel for the brain, should be further explored.


Asunto(s)
Concienciación , Disfunción Cognitiva/psicología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Entrenamiento de Intervalos de Alta Intensidad , Hipoglucemia/psicología , Adulto , Estudios de Casos y Controles , Catecolaminas/metabolismo , Disfunción Cognitiva/etiología , Estudios Cruzados , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Técnica de Clampeo de la Glucosa , Hormona del Crecimiento/metabolismo , Humanos , Hidrocortisona/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/complicaciones , Hipoglucemia/metabolismo , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Ácido Láctico/metabolismo , Masculino , Pruebas Neuropsicológicas , Adulto Joven
16.
J Cereb Blood Flow Metab ; 37(6): 1994-2001, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27389175

RESUMEN

It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.


Asunto(s)
Concienciación , Circulación Cerebrovascular/fisiología , Diabetes Mellitus Tipo 1/fisiopatología , Hipoglucemia/fisiopatología , Hipoglucemia/psicología , Insulina/efectos adversos , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiopatología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemia/inducido químicamente , Insulina/administración & dosificación , Insulina/uso terapéutico , Imagen por Resonancia Magnética , Masculino
17.
Diabetes ; 65(6): 1601-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26993070

RESUMEN

Brain lactate may be involved in the development of impaired awareness of hypoglycemia (IAH), a condition that affects approximately 25% of patients with type 1 diabetes and increases the risk of severe hypoglycemia. The aim of this study was to investigate the effect of acute hypoglycemia on brain lactate concentration in patients with IAH as compared with those with normal awareness of hypoglycemia (NAH) and healthy control subjects (n = 7 per group). After an overnight fast, all subjects underwent a two-step hyperinsulinemic euglycemic (5.0 mmol/L)-hypoglycemic (2.8 mmol/L) glucose clamp. Brain lactate concentrations were measured continuously with (1)H-MRS using a specific lactate detection method. Hypoglycemia generated symptoms in patients with NAH and healthy control subjects but not in patients with IAH. Brain lactate fell significantly by ∼20% in response to hypoglycemia in patients with type 1 diabetes with IAH but remained stable in both healthy control subjects and in patients with NAH. The fall in brain lactate is compatible with increased brain lactate oxidation providing an alternative fuel source during hypoglycemia, which may contribute to the impaired detection of hypoglycemia.


Asunto(s)
Concienciación/fisiología , Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hipoglucemia/metabolismo , Ácido Láctico/metabolismo , Adulto , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/psicología , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hipoglucemia/etiología , Hipoglucemia/psicología , Insulina/sangre , Espectroscopía de Resonancia Magnética , Masculino , Adulto Joven
18.
Cell Mol Life Sci ; 73(4): 705-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26521082

RESUMEN

Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Neuroimagen/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Humanos , Hipoglucemia/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
19.
J Neurosci Methods ; 253: 116-25, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26079495

RESUMEN

BACKGROUND: In deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's Disease (PD), often microelectrode recordings (MER) are used for STN identification. However, for advanced target identification of the sensorimotor STN, it may be relevant to use local field potential (LFP) recordings. Then, it is important to assure that the measured oscillations are coming from the close proximity of the electrode. NEW METHOD: Through multiple simultaneous recordings of LFP and neuronal spiking, we investigated the temporal relationship between local neuronal spiking and more global LFP. We analyzed the local oscillations in the LFP by calculating power only over specific frequencies that show a significant coherence between LFP and neuronal spiking. Using this 'coherence method', we investigated how well measurements in the sensorimotor STN could be discriminated from measurements elsewhere in the STN. RESULTS/COMPARISON WITH EXISTING METHODS: The 'sensorimotor power index' (SMPI) of beta frequencies, representing the ability to discriminate sensorimotor STN measurements based on the beta power, was significantly larger using the 'coherence method' for LFP spectral analysis compared to other methods where either the complete LFP beta spectrum or only the prominent peaks in the LFP beta spectrum were used to calculate beta power. CONCLUSIONS: The results suggest that due to volume conduction of beta frequency oscillations, proper localization of the sensorimotor STN with only LFP recordings is difficult. However, combining recordings of LFP and neuronal spiking and calculating beta power over the coherent parts of the LFP spectrum can be beneficial in discriminating the sensorimotor STN.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo beta/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Adulto , Anciano , Mapeo Encefálico , Femenino , Análisis de Fourier , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA