Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(9): 1011-1023, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38776406

RESUMEN

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs), such as phosphodiesterase 4B (PDE4B), has recently been described to effectively prevent heart failure (HF) in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here, we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload-induced HF in mice by acting on and restoring altered cAMP compartmentation in distinct subcellular microdomains. METHODS AND RESULTS: HF was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3, or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis, and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentation in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts, and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human-induced pluripotent stem-derived cardiomyocytes with the A2254V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSION: Our data indicate that gene therapy with phosphodiesterases can prevent HF including associated cardiac remodelling and arrhythmias by restoring altered cAMP compartmentation in functionally relevant subcellular microdomains.


Asunto(s)
AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Modelos Animales de Enfermedad , Terapia Genética , Insuficiencia Cardíaca , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , AMP Cíclico/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Humanos , Ratones Endogámicos C57BL , Masculino , Arritmias Cardíacas/enzimología , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Remodelación Ventricular , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Función Ventricular Izquierda , Señalización del Calcio , Fosforilación , Frecuencia Cardíaca
2.
Cardiovasc Res ; 120(3): 273-285, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38099489

RESUMEN

AIMS: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon ß-adrenergic receptor (ß-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial ß2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of ß1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased ß2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION: These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Animales , Ratones , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , AMP Cíclico , Diabetes Mellitus Tipo 2/complicaciones , Insuficiencia Cardíaca/etiología , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Volumen Sistólico
3.
Biotechnol Bioeng ; 115(7): 1778-1792, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573361

RESUMEN

Functional mosaic analysis allows for the direct comparison of mutant cells with differentially marked control cells in the same organism. While this offers a powerful approach for elucidating the role of specific genes or signalling pathways in cell populations of interest, genetic strategies for generating functional mosaicism remain challenging. We describe a novel and streamlined approach for functional mosaic analysis, which combines stochastic Cre/lox recombination with gene targeting in the ROSA26 locus. With the RoMo strategy a cell population of interest is randomly split into a cyan fluorescent and red fluorescent subset, of which the latter overexpresses a chosen transgene. To integrate this approach into high-throughput gene targeting initiatives, we developed a procedure that utilizes Gateway cloning for the generation of new targeting vectors. RoMo can be used for gain-of-function experiments or for altering signaling pathways in a mosaic fashion. To demonstrate this, we developed RoMo-dnGs mice, in which Cre-recombined red fluorescent cells co-express a dominant-negative Gs protein. RoMo-dnGs mice allowed us to inhibit G protein-coupled receptor activation in a fraction of cells, which could then be directly compared to differentially marked control cells in the same animal. We demonstrate how RoMo-dnGs mice can be used to obtain mosaicism in the brain and in peripheral organs for various cell types. RoMo offers an efficient new approach for functional mosaic analysis that extends the current toolbox and may reveal important new insights into in vivo gene function.


Asunto(s)
Marcación de Gen/métodos , Sitios Genéticos , ARN no Traducido/genética , Recombinación Genética , Animales , Integrasas/metabolismo , Ratones , Mosaicismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA