Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 229(5): 1256-1265, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38207119

RESUMEN

BACKGROUND: Natural killer (NK) cells are dysfunctional in chronic human immunodeficiency virus (HIV) infection as they are not able to clear virus. We hypothesized that an infusion of NK cells, supported by interleukin 2 (IL-2) or IL-15, could decrease virus-producing cells in the lymphatic tissues. METHODS: We conducted a phase 1 pilot study in 6 persons with HIV (PWH), where a single infusion of haploidentical related donor NK cells was given plus either IL-2 or N-803 (an IL-15 superagonist). RESULTS: The approach was well tolerated with no unexpected adverse events. We did not pretreat recipients with cyclophosphamide or fludarabine to "make immunologic space," reasoning that PWH on stable antiretroviral treatment remain T-cell depleted in lymphatic tissues. We found donor cells remained detectable in blood for up to 8 days (similar to what is seen in cancer pretreatment with lymphodepleting chemotherapy) and in the lymph nodes and rectum up to 28 days. There was a moderate decrease in the frequency of viral RNA-positive cells in lymph nodes. CONCLUSIONS: There was a moderate decrease in HIV-producing cells in lymph nodes. Further studies are warranted to determine the impact of healthy NK cells on HIV reservoirs and if restoring NK-cell function could be part of an HIV cure strategy. Clinical Trials Registration. NCT03346499 and NCT03899480.


Asunto(s)
Infecciones por VIH , Interleucina-15 , Interleucina-2 , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Adulto , Proyectos Piloto , Femenino , Carga Viral , Ganglios Linfáticos/inmunología , VIH-1/inmunología
2.
J Infect Dis ; 227(11): 1245-1254, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36869698

RESUMEN

Alveolar type II (ATII) pneumocytes as defenders of the alveolus are critical to repairing lung injury. We investigated the ATII reparative response in coronavirus disease 2019 (COVID-19) pneumonia, because the initial proliferation of ATII cells in this reparative process should provide large numbers of target cells to amplify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus production and cytopathological effects to compromise lung repair. We show that both infected and uninfected ATII cells succumb to tumor necrosis factor-α (TNF)-induced necroptosis, Bruton tyrosine kinase (BTK)-induced pyroptosis, and a new PANoptotic hybrid form of inflammatory cell death mediated by a PANoptosomal latticework that generates distinctive COVID-19 pathologies in contiguous ATII cells. Identifying TNF and BTK as the initiators of programmed cell death and SARS-CoV-2 cytopathic effects provides a rationale for early antiviral treatment combined with inhibitors of TNF and BTK to preserve ATII cell populations, reduce programmed cell death and associated hyperinflammation, and restore functioning alveoli in COVID-19 pneumonia.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patología , Piroptosis , Necroptosis , Pulmón/patología
3.
bioRxiv ; 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35982650

RESUMEN

The alveolar type II (ATII) pneumocyte has been called the defender of the alveolus because, amongst the cell’s many important roles, repair of lung injury is particularly critical. We investigated the extent to which SARS-CoV-2 infection incapacitates the ATII reparative response in fatal COVID-19 pneumonia, and describe massive infection and destruction of ATI and ATII cells. We show that both type I interferon-negative infected ATII and type I-interferon-positive uninfected ATII cells succumb to TNF-induced necroptosis, BTK-induced pyroptosis and a new PANoptotic hybrid form of inflammatory cell death that combines apoptosis, necroptosis and pyroptosis in the same cell. We locate pathway components of these cell death pathways in a PANoptosomal latticework that mediates emptying and disruption of ATII cells and destruction of cells in blood vessels associated with microthrombi. Early antiviral treatment combined with inhibitors of TNF and BTK could preserve ATII cell populations to restore lung function and reduce hyperinflammation from necroptosis, pyroptosis and panoptosis. Highlights: In fatal COVID-19 pneumonia, the initial destruction of Type II alveolar cells by SARS-CoV-2 infection is amplified by infection of the large numbers of spatially contiguous Type II cells supplied by the proliferative reparative response.Interferon-negative infected cells and interferon-positive uninfected cells succumb to inflammatory forms of cell death, TNF-induced necroptosis, BTK-induced pyroptosis, and PANoptosis.All of the cell death pathway components, including a recently identified NINJ1 component, are localized in a PANoptosome latticework that empties in distinctive patterns to generate morphologically distinguishable cell remnants.Early combination treatment with inhibitors of SARS-CoV-2 replication, TNF and BTK could reduce the losses of Type II cells and preserve a reparative response to regenerate functional alveoli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA