Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766216

RESUMEN

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero. However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to ß-thalassemia, including severe anemia and erythrotoxicity due to imbalance of ß-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for ß-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the ß-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.

2.
Nat Commun ; 15(1): 2625, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521763

RESUMEN

Homology Directed Repair (HDR) enables precise genome editing, but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we develop a functional, pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing, synergize with a DNAPK inhibitor molecule, and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , Humanos , Edición Génica/métodos , Reparación del ADN , Reparación del ADN por Unión de Extremidades
3.
Front Genome Ed ; 4: 1050507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439866

RESUMEN

The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of in silico-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect-small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve ex vivo isolation of a patient's own stem cells, modification, and re-transplantation. However, there is growing interest in direct, in vivo delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to ex vivo manipulation, in vivo editing has only one desired outcome-on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential.

4.
Elife ; 112022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147495

RESUMEN

Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.


Asunto(s)
Anemia de Células Falciformes/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Edición Génica/métodos , Adenina/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citosina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Mutación Puntual , Regiones Promotoras Genéticas , Globinas beta/genética , Talasemia beta/genética , gamma-Globinas/genética
5.
Front Genome Ed ; 4: 1112956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36742457

RESUMEN

[This corrects the article DOI: 10.3389/fgeed.2022.1050507.].

6.
Nat Commun ; 11(1): 2109, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32355159

RESUMEN

Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Reparación del ADN por Recombinación , Roturas del ADN de Doble Cadena , Edición Génica , Ingeniería Genética/métodos , Células HCT116 , Células HEK293 , Células HeLa , Recombinación Homóloga , Humanos , Células K562 , Fenotipo , ARN Guía de Kinetoplastida/metabolismo , Fase S
7.
Nat Protoc ; 15(5): 1775-1799, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32313254

RESUMEN

DISCOVER-seq (discovery of in situ Cas off-targets and verification by sequencing) is a broadly applicable approach for unbiased CRISPR-Cas off-target identification in cells and tissues. It leverages the recruitment of DNA repair factors to double-strand breaks (DSBs) after genome editing with CRISPR nucleases. Here, we describe a detailed experimental protocol and analysis pipeline with which to perform DISCOVER-seq. The principle of this method is to track the precise recruitment of MRE11 to DSBs by chromatin immunoprecipitation followed by next-generation sequencing. A customized open-source bioinformatics pipeline, BLENDER (blunt end finder), then identifies off-target sequences genome wide. DISCOVER-seq is capable of finding and measuring off-targets in primary cells and in situ. The two main advantages of DISCOVER-seq are (i) low false-positive rates because DNA repair enzyme binding is required for genome edits to occur and (ii) its applicability to a wide variety of systems, including patient-derived cells and animal models. The whole protocol, including the analysis, can be completed within 2 weeks.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Células K562 , Ratones , Análisis de Secuencia de ADN
8.
Science ; 364(6437): 286-289, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31000663

RESUMEN

CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Roturas del ADN de Doble Cadena , Reparación del ADN , Edición Génica/métodos , Proteína Homóloga de MRE11/metabolismo , Análisis de Secuencia de ADN/métodos , Adenoviridae , Animales , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , ADN/química , ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Células K562 , Proteína Homóloga de MRE11/genética , ARN Guía de Kinetoplastida
9.
Blood ; 133(8): 852-856, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30617196

RESUMEN

ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia, result from mutations in the adult ß-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of ß-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The -113A>G HPFH mutation falls within the -115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the -113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the -113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the -113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Mutación Puntual , Elementos de Respuesta , Talasemia beta , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Línea Celular , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Factor de Transcripción GATA1/genética , Globinas beta/genética , Globinas beta/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo
10.
Trends Genet ; 34(12): 927-940, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30287096

RESUMEN

Disorders in hemoglobin (hemoglobinopathies) were the first monogenic diseases to be characterized and remain among the most common and best understood genetic conditions. Moreover, the study of the ß-globin locus provides a textbook example of developmental gene regulation. The fetal γ-globin genes (HBG1/HBG2) are ordinarily silenced around birth, whereupon their expression is replaced by the adult ß-globin genes (HBB primarily and HBD). Over 50 years ago it was recognized that mutations that cause lifelong persistence of fetal γ-globin expression ameliorate the debilitating effects of mutations in ß-globin. Since then, research has focused on therapeutically reactivating the fetal γ-globin genes. Here, we summarize recent discoveries, focusing on the influence of genome editing technologies, including CRISPR-Cas9, and emerging gene therapy approaches.


Asunto(s)
Terapia Genética/tendencias , Hemoglobinopatías/genética , Globinas beta/genética , gamma-Globinas/genética , Adulto , Sistemas CRISPR-Cas/genética , Edición Génica/tendencias , Hemoglobinopatías/sangre , Hemoglobinopatías/patología , Humanos , Mutación , Globinas beta/uso terapéutico , gamma-Globinas/uso terapéutico
11.
PLoS Biol ; 16(7): e2005840, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30011268

RESUMEN

Clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR-associated 9 (Cas9) genome editing is revolutionizing fundamental research and has great potential for the treatment of many diseases. While editing of immortalized cell lines has become relatively easy, editing of therapeutically relevant primary cells and tissues can remain challenging. One recent advancement is the delivery of a Cas9 protein and an in vitro-transcribed (IVT) guide RNA (gRNA) as a precomplexed ribonucleoprotein (RNP). This approach allows editing of primary cells such as T cells and hematopoietic stem cells, but the consequences beyond genome editing of introducing foreign Cas9 RNPs into mammalian cells are not fully understood. Here, we show that the IVT gRNAs commonly used by many laboratories for RNP editing trigger a potent innate immune response that is similar to canonical immune-stimulating ligands. IVT gRNAs are recognized in the cytosol through the retinoic acid-inducible gene I (RIG-I) pathway but not the melanoma differentiation-associated gene 5 (MDA5) pathway, thereby triggering a type I interferon response. Removal of the 5'-triphosphate from gRNAs ameliorates inflammatory signaling and prevents the loss of viability associated with genome editing in hematopoietic stem cells. The potential for Cas9 RNP editing to induce a potent antiviral response indicates that care must be taken when designing therapeutic strategies to edit primary cells.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/genética , ARN Guía de Kinetoplastida/genética , Transcripción Genética , Línea Celular , Citosol/metabolismo , Humanos , Interferón Tipo I/metabolismo , Modelos Biológicos , ARN Guía de Kinetoplastida/metabolismo , Receptores Inmunológicos
12.
Nat Genet ; 50(4): 498-503, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610478

RESUMEN

ß-hemoglobinopathies such as sickle cell disease (SCD) and ß-thalassemia result from mutations in the adult HBB (ß-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 (γ-globin) genes is a therapeutic goal for treating SCD and ß-thalassemia 1 . Some forms of hereditary persistence of fetal hemoglobin (HPFH), a rare benign condition in which individuals express the γ-globin gene throughout adulthood, are caused by point mutations in the γ-globin gene promoter at regions residing ~115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at -115 and -200 bp, respectively. Furthermore, introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR-Cas9 disrupted repressor binding and raised γ-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Hemoglobina Fetal/genética , Mutación , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , gamma-Globinas/genética , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Secuencia de Bases , Sitios de Unión/genética , Sistemas CRISPR-Cas , Línea Celular , Humanos , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Sitio de Iniciación de la Transcripción , Talasemia beta/genética , Talasemia beta/terapia
13.
Mol Cell Proteomics ; 16(12): 2229-2242, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28663172

RESUMEN

Lysine methylation is widespread on human proteins, however the enzymes that catalyze its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knockout putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knockout of METTL21B, and the expected loss of lysine 79 methylation on knockout of EEF1AKMT1 No loss of eEF1A methylation was seen in the METTL23 knockout. Recombinant METTL21B was shown in vitro to catalyze methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knockout, and changes to further processes related to eEF1A function in knockouts of both METTL21B and EEF1AKMT1 This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knockouts of putative protein methyltransferase genes, for substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Proteómica/métodos , Sistemas CRISPR-Cas , Dominio Catalítico , Humanos , Células K562 , Lisina/química , Metilación , Metiltransferasas/química , Modelos Moleculares , Factor 1 de Elongación Peptídica/química , Conformación Proteica
14.
Blood ; 130(6): 803-807, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28659276

RESUMEN

ß-Hemoglobinopathies are among the most common single-locus inherited diseases. In this condition, high fetal hemoglobin (HbF) levels have been found to be beneficial, and boosting HbF expression is seen as an attractive therapy. Naturally occurring mutations in the fetal globin promoter can result in high HbF persisting into adulthood in a benign condition known as hereditary persistence of fetal hemoglobin (HPFH). Individuals with one form of HPFH, British HPFH, carry a T to C substitution at position -198 of the fetal globin gene promoter. These individuals exhibit HbF levels of up to 20%, enough to ameliorate the symptoms of ß-hemoglobinopathies. Here, we use clustered regularly interspaced short palindromic repeat-mediated genome editing to introduce the -198 substitution into human erythroid HUDEP-2 cells and show that this mutation is sufficient to substantially elevate expression of HbF. We also examined the molecular mechanism underlying the increase in fetal globin expression. Through a combination of in vitro and in vivo studies, we demonstrate that the mutation creates a de novo binding site for the important erythroid gene activator Krüppel-like factor 1 (KLF1/erythroid KLF). Our results indicate that introducing this single naturally occurring mutation leads to significantly boosted HbF levels.


Asunto(s)
Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación Puntual , Regulación hacia Arriba , gamma-Globinas/genética , Línea Celular , Humanos , Regiones Promotoras Genéticas
15.
Blood Adv ; 1(11): 685-692, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29296711

RESUMEN

Genes encoding the human ß-like hemoglobin proteins undergo a developmental switch from fetal γ-globin to adult ß-globin expression around the time of birth. ß-hemoglobinopathies, such as sickle-cell disease and ß-thalassemia, result from mutations affecting the adult ß-globin gene. The only treatment options currently available carry significant adverse effects. Analyses of heritable variations in fetal hemoglobin (HbF) levels have provided evidence that reactivation of the silenced fetal γ-globin genes in adult erythroid cells is a promising therapy. The γ-globin repressor BCL11A has become the major focus, with several studies investigating its regulation and function as a first step to inhibiting its expression or activity. However, a second repression mechanism was recently shown to be mediated by the transcription factor ZBTB7A/LRF, suggesting that understanding the regulation of ZBTB7A may also be useful. Here we show that Krüppel-like factor 1 (KLF1) directly drives expression of ZBTB7A in erythroid cells by binding to its proximal promoter. We have also uncovered an erythroid-specific regulation mechanism, leading to the upregulation of a novel ZBTB7A transcript in the erythroid compartment. The demonstration that ZBTB7A, like BCL11A, is a KLF1 target gene also fits with the observation that reduced KLF1 expression or activity is associated with HbF derepression.

16.
Nat Commun ; 6: 7085, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25971621

RESUMEN

Genetic disorders resulting from defects in the adult globin genes are among the most common inherited diseases. Symptoms worsen from birth as fetal γ-globin expression is silenced. Genome editing could permit the introduction of beneficial single-nucleotide variants to ameliorate symptoms. Here, as proof of concept, we introduce the naturally occurring Hereditary Persistance of Fetal Haemoglobin (HPFH) -175T>C point mutation associated with elevated fetal γ-globin into erythroid cell lines. We show that this mutation increases fetal globin expression through de novo recruitment of the activator TAL1 to promote chromatin looping of distal enhancers to the modified γ-globin promoter.


Asunto(s)
Hemoglobina Fetal/genética , Genoma , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Cromatina/genética , Dimerización , Silenciador del Gen , Humanos , Células K562 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Mutación Puntual , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda
17.
J Biol Chem ; 290(13): 8591-605, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25659434

RESUMEN

Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Oxidorreductasas de Alcohol , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Proteínas Co-Represoras , ADN/química , Ensayo de Cambio de Movilidad Electroforética , Factores de Transcripción de Tipo Kruppel/química , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Transcripción Genética , Activación Transcripcional
18.
BMC Mol Biol ; 15: 8, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24885809

RESUMEN

BACKGROUND: Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription. RESULTS: We found that expression of a human transgenic α-globin reporter gene is markedly up-regulated in fetal and adult erythroid cells of Klf3-/- mice. Inspection of the mouse and human α-globin promoters revealed a number of canonical KLF-binding sites, and indeed, KLF3 was shown to bind to these regions both in vitro and in vivo. Despite these observations, we did not detect an increase in endogenous murine α-globin expression in Klf3-/- erythroid tissue. However, examination of murine embryonic fibroblasts lacking KLF3 revealed significant de-repression of α-globin gene expression. This suggests that KLF3 may contribute to the silencing of the α-globin locus in non-erythroid tissue. Moreover, ChIP-Seq analysis of murine fibroblasts demonstrated that across the locus, KLF3 does not occupy the promoter regions of the α-globin genes in these cells, but rather, binds to upstream, DNase hypersensitive regulatory regions. CONCLUSIONS: These findings reveal that the occupancy profile of KLF3 at the α-globin locus differs in erythroid and non-erythroid cells. In erythroid cells, KLF3 primarily binds to the promoters of the adult α-globin genes, but appears dispensable for normal transcriptional regulation. In non-erythroid cells, KLF3 distinctly binds to the HS-12 and HS-26 elements and plays a non-redundant, albeit modest, role in the silencing of α-globin expression.


Asunto(s)
Células Eritroides/metabolismo , Regulación de la Expresión Génica/genética , Factores de Transcripción de Tipo Kruppel/genética , Globinas alfa/genética , Animales , Sitios de Unión/genética , Células COS , Línea Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Células K562 , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Globinas alfa/metabolismo
19.
Nucleic Acids Res ; 42(1): 276-89, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24106088

RESUMEN

Transcription factors (TFs) are often regarded as being composed of a DNA-binding domain (DBD) and a functional domain. The two domains are considered separable and autonomous, with the DBD directing the factor to its target genes and the functional domain imparting transcriptional regulation. We examined an archetypal zinc finger (ZF) TF, Krüppel-like factor 3 with an N-terminal domain that binds the corepressor CtBP and a DBD composed of three ZFs at its C-terminus. We established a system to compare the genomic occupancy profile of wild-type Krüppel-like factor 3 with two mutants affecting the N-terminal functional domain: a mutant unable to contact the cofactor CtBP and a mutant lacking the entire N-terminal domain, but retaining the ZFs intact. Chromatin immunoprecipitation followed by sequencing was used to assess binding across the genome in murine embryonic fibroblasts. Unexpectedly, we observe that mutations in the N-terminal domain generally reduced binding, but there were also instances where binding was retained or even increased. These results provide a clear demonstration that the correct localization of TFs to their target genes is not solely dependent on their DNA-contact domains. This informs our understanding of how TFs operate and is of relevance to the design of artificial ZF proteins.


Asunto(s)
ADN/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia de Consenso , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína
20.
Proc Natl Acad Sci U S A ; 108(35): 14443-8, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21844373

RESUMEN

The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.


Asunto(s)
Proteínas de Unión al ADN/química , Factor de Transcripción GATA1/química , Metaloproteínas/química , Proteínas Nucleares/química , Factores de Transcripción/química , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales , Unión Competitiva , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA1/metabolismo , Proteínas con Dominio LIM , Metaloproteínas/metabolismo , Modelos Anatómicos , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA