Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gene Ther ; 29(9): 513-519, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34803165

RESUMEN

Numerous pediatric neurogenetic diseases may be optimally treated by in utero gene therapy (IUGT); but advancing such treatments requires animal models that recapitulate developmental physiology relevant to humans. One disease that could benefit from IUGT is the autosomal recessive motor neuron disease spinal muscular atrophy (SMA). Current SMA gene-targeting therapeutics are more efficacious when delivered shortly after birth, however postnatal treatment is rarely curative in severely affected patients. IUGT may provide benefit for SMA patients. In previous studies, we developed a large animal porcine model of SMA using AAV9 to deliver a short hairpin RNA (shRNA) directed at porcine survival motor neuron gene (Smn) mRNA on postnatal day 5. Here, we aimed to model developmental features of SMA in fetal piglets and to demonstrate the feasibility of prenatal gene therapy by delivering AAV9-shSmn in utero. Saline (sham), AAV9-GFP, or AAV9-shSmn was injected under direct ultrasound guidance between gestational ages 77-110 days. We developed an ultrasound-guided technique to deliver virus under direct visualization to mimic the clinic setting. Saline injection was tolerated and resulted in viable, healthy piglets. Litter rejection occurred within seven days of AAV9 injection for all other rounds. Our real-world experience of in utero viral delivery followed by AAV9-related fetal rejection suggests that the domestic sow may not be a viable model system for preclinical in utero AAV9 gene therapy studies.


Asunto(s)
Dependovirus , Atrofia Muscular Espinal , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/veterinaria , Embarazo , ARN Mensajero , ARN Interferente Pequeño , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Porcinos
2.
Adv Biosyst ; 4(11): e2000157, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939985

RESUMEN

While gene and cell therapies have emerged as promising treatment strategies for various neurological conditions, heavy reliance on viral vectors can hamper widespread clinical implementation. Here, the use of tissue nanotransfection as a platform nanotechnology to drive nonviral gene delivery to nerve tissue via nanochannels, in an effective, controlled, and benign manner is explored. TNT facilitates plasmid DNA delivery to the sciatic nerve of mice in a voltage-dependent manner. Compared to standard bulk electroporation (BEP), impairment in toe-spread and pinprick response is not caused by TNT, and has limited to no impact on electrophysiological parameters. BEP, however, induces significant nerve damage and increases macrophage immunoreactivity. TNT is subsequently used to deliver vasculogenic cell therapies to crushed nerves via delivery of reprogramming factor genes Etv2, Foxc2, and Fli1 (EFF). The results indicate the TNT-based delivery of EFF in a sciatic nerve crush model leads to increased vascularity, reduced macrophage infiltration, and improved recovery in electrophysiological parameters compared to crushed nerves that are TNT-treated with sham/empty plasmids. Altogether, the results indicate that TNT can be a powerful platform nanotechnology for localized nonviral gene delivery to nerve tissue, in vivo, and the deployment of reprogramming-based cell therapies for nerve repair/regeneration.


Asunto(s)
Electroporación/métodos , Técnicas de Transferencia de Gen , Nanomedicina/métodos , Nanoestructuras , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo
3.
Muscle Nerve ; 59(2): 254-262, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30370671

RESUMEN

INTRODUCTION: Electrophysiological measurements are used in longitudinal clinical studies to provide insight into the progression of amyotrophic lateral sclerosis (ALS) and the relationship between muscle weakness and motor unit (MU) degeneration. Here, we used a similar longitudinal approach in the Cu/Zn superoxide dismutase (SOD1[G93A]) mouse model of ALS. METHODS: In vivo muscle contractility and MU connectivity assays were assessed longitudinally in SOD1(G93A) and wild type mice from postnatal days 35 to 119. RESULTS: In SOD1(G93A) males, muscle contractility was reduced by day 35 and preceded MU loss. Muscle contractility and motor unit reduction were delayed in SOD1(G93A) females compared with males, but, just as with males, muscle contractility reduction preceded MU loss. DISCUSSION: The longitudinal contractility and connectivity paradigm employed here provides additional insight into the SOD1(G93A) mouse model and suggests that loss of muscle contractility is an early finding that may precede loss of MUs and motor neuron death. Muscle Nerve 59:254-262, 2019.


Asunto(s)
Neuronas Motoras/fisiología , Contracción Muscular/genética , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Potenciales de Acción/genética , Factores de Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/fisiología , Enfermedades Musculares/etiología , Unión Neuromuscular/diagnóstico por imagen , Unión Neuromuscular/genética , Superóxido Dismutasa/genética , Torque
4.
Neurobiol Aging ; 67: 128-136, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656012

RESUMEN

In older adults, the loss of muscle strength (dynapenia) and the loss of muscle mass (sarcopenia) are important contributors to the loss of physical function. We sought to investigate dynapenia, sarcopenia, and the loss of motor unit function in aging mice. C57BL/6J mice were analyzed with cross-sectional (males: 3 vs. 27 months; males and females: 8 vs. 12 vs. 20 months) and longitudinal studies (males: 10-25 months) using in vivo electrophysiological measures of motor unit connectivity (triceps surae compound muscle action potential and motor unit number estimation), in vivo measures of plantar flexion torque, magnetic resonance imaging of hind limb muscle volume, and grip strength. Compound muscle action potential amplitude, motor unit number estimation, and plantar flexion torque were decreased at 20 months. In contrast, grip strength was reduced at 24 months. Motor unit number estimates correlated with muscle torque and hind limb muscle volume. Our results demonstrate that the loss of motor unit connectivity is an early finding in aging male and female mice and that muscle size and contractility are both associated with motor unit number.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Potenciales de Acción , Envejecimiento/patología , Animales , Estudios Transversales , Fenómenos Electrofisiológicos , Femenino , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Tamaño de los Órganos
5.
Exp Neurol ; 297: 101-109, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28797631

RESUMEN

Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.


Asunto(s)
Astrocitos/fisiología , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/genética , Neuronas Motoras/fisiología , Mutación/genética , Proteínas de Neoplasias/genética , Neuroglía/fisiología , Animales , Astrocitos/patología , Supervivencia Celular/fisiología , Enfermedad de Charcot-Marie-Tooth/patología , Técnicas de Cocultivo , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares , Neuronas Motoras/patología , Neuroglía/patología
6.
J Vis Exp ; (103)2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26436455

RESUMEN

Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.


Asunto(s)
Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Miembro Posterior/inervación , Miembro Posterior/fisiología , Ratones , Neuronas Motoras/fisiología , Nervio Ciático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA