Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 624(7990): 173-181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030723

RESUMEN

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Metilación de ADN , Compensación de Dosificación (Genética) , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Haploinsuficiencia , Histonas/metabolismo , Ratones Noqueados , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Sci Adv ; 9(34): eadh5598, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624894

RESUMEN

Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.


Asunto(s)
Núcleo Celular , Proteínas Hedgehog , Proteínas Hedgehog/genética , Regulación de la Expresión Génica , Diferenciación Celular/genética , Fibroblastos
3.
Nat Commun ; 13(1): 3525, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725842

RESUMEN

Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.


Asunto(s)
Heterocromatina , Células Madre Embrionarias de Ratones , Animales , Inestabilidad Cromosómica/genética , Células Madre Embrionarias , Heterocromatina/genética , Histonas/genética , Ratones
4.
Nat Commun ; 12(1): 6212, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707105

RESUMEN

Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.


Asunto(s)
Carbono/metabolismo , Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Lisina/metabolismo , Obesidad/etiología , Acetilación , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aminoácidos/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Haploinsuficiencia , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Metabolismo de los Lípidos , Ratones , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
5.
Mol Metab ; 38: 100942, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32217072

RESUMEN

BACKGROUND: Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. SCOPE OF REVIEW: This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. MAJOR CONCLUSIONS: Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.


Asunto(s)
Comunicación Celular/genética , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Animales , Comunicación Celular/fisiología , Núcleo Celular/genética , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Genoma Mitocondrial/genética , Genoma Mitocondrial/fisiología , Histona Acetiltransferasas/metabolismo , Histonas/genética , Humanos , Mitocondrias/genética , ARN/metabolismo
6.
Epigenetics Chromatin ; 12(1): 21, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940194

RESUMEN

BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Citrulinación , Heterocromatina/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Heterocromatina/química , Heterocromatina/genética , Código de Histonas , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Unión Proteica , Desiminasas de la Arginina Proteica/metabolismo
7.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27294782

RESUMEN

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Histonas/genética , Leucemia Bifenotípica Aguda/genética , Metiltransferasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Acetilación , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Proteínas de Ciclo Celular , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Femenino , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Leucemia Bifenotípica Aguda/metabolismo , Leucemia Bifenotípica Aguda/patología , Masculino , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Unión Proteica , Proteómica/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos T/patología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Mol Carcinog ; 54(12): 1815-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25491945

RESUMEN

Even though a large proportion of patients with acute myeloid leukemia (AML) achieve a complete remission upon initial therapy, the majority of them eventually relapse with resistant disease. Overexpression of the gene coding for the transcription factor Ecotropic Virus Integration site 1 (EVI1) is associated with rapid disease recurrence and shortened survival. We therefore sought to identify EVI1 target genes that may play a role in chemotherapy resistance using a previously established in vitro model system for EVI1 positive myeloid malignancies. Gene expression microarray analyses uncovered the Cell Adhesion Molecule 1 (CADM1) gene as a candidate whose deregulation by EVI1 may contribute to drug refractoriness. CADM1 is an apoptosis inducing tumor suppressor gene that is inactivated by methylation in a variety of tumor types. In the present study we provide evidence that it may play a role in chemotherapy induced cell death in AML: CADM1 was induced by drugs used in the treatment of AML in a human myeloid cell line and in primary diagnostic AML samples, and its experimental expression in a cell line model increased the proportion of apoptotic cells. CADM1 up-regulation was abolished by ectopic expression of EVI1, and EVI1 expression correlated with increased CADM1 promoter methylation both in a cell line model and in primary AML cells. Finally, CADM1 induction was repressed in primary samples from AML patients at relapse. In summary, these data suggest that failure to up-regulate CADM1 in response to chemotherapeutic drugs may contribute to therapy resistance in AML.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/genética , Moléculas de Adhesión Celular/genética , Resistencia a Antineoplásicos/genética , Genes Supresores de Tumor/fisiología , Inmunoglobulinas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Anciano , Apoptosis/efectos de los fármacos , Molécula 1 de Adhesión Celular , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Persona de Mediana Edad , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Proto-Oncogenes/genética , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA