Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(25): e2220132120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307476

RESUMEN

Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.


Asunto(s)
Daño del ADN , Electrones , Dímeros de Pirimidina , Reparación del ADN , Rayos Láser
2.
Neuron ; 99(6): 1155-1169.e9, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30174115

RESUMEN

Cellular prion protein (PrPC) modulates cell adhesion and signaling in the brain. Conversion to its infectious isoform causes neurodegeneration, including Creutzfeldt-Jakob disease in humans. PrPC undergoes rapid plasma membrane turnover and extracellular release via exosomes. However, the intracellular transport of PrPC and its potential impact on prion disease progression is barely understood. Here we identify critical components of PrPC trafficking that also link intracellular and extracellular PrPC turnover. PrPC associates with muskelin, dynein, and KIF5C at transport vesicles. Notably, muskelin coordinates bidirectional PrPC transport and facilitates lysosomal degradation over exosomal PrPC release. Muskelin gene knockout consequently causes PrPC accumulation at the neuronal surface and on secreted exosomes. Moreover, prion disease onset is accelerated following injection of pathogenic prions into muskelin knockout mice. Our data identify an essential checkpoint in PrPC turnover. They propose a novel connection between neuronal intracellular lysosome targeting and extracellular exosome trafficking, relevant to the pathogenesis of neurodegenerative conditions.


Asunto(s)
Membrana Celular/metabolismo , Exosomas/metabolismo , Lisosomas/metabolismo , Proteínas Priónicas/metabolismo , Animales , Progresión de la Enfermedad , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , Transporte de Proteínas/fisiología , Vesículas Transportadoras/metabolismo
3.
Opt Lett ; 43(12): 2877-2880, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905713

RESUMEN

We present a three-color femtosecond Er/Yb:fiber laser enabling highly specific and standardized nonlinear optical manipulation of live cells. The system simultaneously provides bandwidth-limited 80-fs pulses with identical intensity envelope centered at wavelengths of 515, 775, and 1035 nm in the focus of a confocal microscope. We achieve this goal by combining high-order dispersion control via, for example, chirped fiber Bragg gratings with proper bandwidth management in each nonlinear conversion step. Wavelength-selective and noninterfering induction of deoxyribonucleic acid (DNA) photoproducts and DNA strand breaks, as well as fluorescence photoactivation of a photoactivatable green fluorescent protein (PA-GFP)-histone fusion protein, are demonstrated. The capability to introduce different types of DNA lesions and perform photoswitching experiments in a selective manner is essential for quantitative studies on DNA repair and chromatin dynamics.


Asunto(s)
Cromatina/química , ADN/química , Tecnología de Fibra Óptica/métodos , Láseres de Estado Sólido , Roturas del ADN de Doble Cadena , Diseño de Equipo , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA