Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
bioRxiv ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38798459

RESUMEN

Background: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods: To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results: Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions: Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.

2.
Mol Cell Proteomics ; 22(9): 100630, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562535

RESUMEN

Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/metabolismo , Tapsigargina/farmacología , Proteómica/métodos
3.
Nat Neurosci ; 25(12): 1597-1607, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344699

RESUMEN

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteómica , Encéfalo/metabolismo , Tauopatías/metabolismo
4.
Sci Adv ; 8(2): eabh3375, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020422

RESUMEN

Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.

5.
Sci Transl Med ; 13(615): eabh1486, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644148

RESUMEN

Discovery of small-molecule degraders that activate ubiquitin ligase­mediated ubiquitination and degradation of targeted oncoproteins in cancer cells has been an elusive therapeutic strategy. Here, we report a cancer cell­based drug screen of the NCI drug-like compounds library that enabled identification of small-molecule degraders of the small ubiquitin-related modifier 1 (SUMO1). Structure-activity relationship studies of analogs of the hit compound CPD1 led to identification of a lead compound HB007 with improved properties and anticancer potency in vitro and in vivo. A genome-scale CRISPR-Cas9 knockout screen identified the substrate receptor F-box protein 42 (FBXO42) of cullin 1 (CUL1) E3 ubiquitin ligase as required for HB007 activity. Using HB007 pull-down proteomics assays, we pinpointed HB007's binding protein as the cytoplasmic activation/proliferation-associated protein 1 (CAPRIN1). Biolayer interferometry and compound competitive immunoblot assays confirmed the selectivity of HB007's binding to CAPRIN1. When bound to CAPRIN1, HB007 induced the interaction of CAPRIN1 with FBXO42. FBXO42 then recruited SUMO1 to the CAPRIN1-CUL1-FBXO42 ubiquitin ligase complex, where SUMO1 was ubiquitinated in several of human cancer cells. HB007 selectively degraded SUMO1 in patient tumor­derived xenografts implanted into mice. Systemic administration of HB007 inhibited the progression of patient-derived brain, breast, colon, and lung cancers in mice and increased survival of the animals. This cancer cell­based screening approach enabled discovery of a small-molecule degrader of SUMO1 and may be useful for identifying other small-molecule degraders of oncoproteins.


Asunto(s)
Neoplasias , Proteína SUMO-1 , Animales , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitinación
6.
Mol Cell Proteomics ; 20: 100127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34332122

RESUMEN

Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Ojo/metabolismo , Ácido Fólico/biosíntesis , Mitocondrias/metabolismo , Envejecimiento/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas del Ojo/genética , Masculino , Metaboloma , Metabolómica , Proteómica
7.
Anal Chem ; 93(18): 7000-7010, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33908254

RESUMEN

The study of low-abundance proteins is a challenge to discovery-based proteomics. Mass spectrometry (MS) applications, such as thermal proteome profiling (TPP), face specific challenges in the detection of the whole proteome as a consequence of the use of nondenaturing extraction buffers. TPP is a powerful method for the study of protein thermal stability, but quantitative accuracy is highly dependent on consistent detection. Therefore, TPP can be limited in its amenability to study low-abundance proteins that tend to have stochastic or poor detection by MS. To address this challenge, we incorporated an affinity-purified protein complex sample at submolar concentrations as an isobaric trigger channel into a mutant TPP (mTPP) workflow to provide reproducible detection and quantitation of the low-abundance subunits of the cleavage and polyadenylation factor (CPF) complex. The inclusion of an isobaric protein complex trigger channel increased detection an average of 40× for previously detected subunits and facilitated detection of CPF subunits that were previously below the limit of detection. Importantly, these gains in CPF detection did not cause large changes in melt temperature (Tm) calculations for other unrelated proteins in the samples, with a high positive correlation between Tm estimates in samples with and without isobaric trigger channel addition. Overall, the incorporation of an affinity-purified protein complex as an isobaric trigger channel within a tandem mass tag (TMT) multiplex for mTPP experiments is an effective and reproducible way to gather thermal profiling data on proteins that are not readily detected using the original TPP or mTPP protocols.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas , Estabilidad Proteica , Flujo de Trabajo
8.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33830945

RESUMEN

One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.


Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Celular/efectos de los fármacos , Inmunoterapia , Lactonas/farmacología , Neoplasias Experimentales/terapia , Sesquiterpenos/farmacología , Animales , Antígenos de Neoplasias/genética , Células HCT116 , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Inmunidad Celular/genética , Lactonas/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Sesquiterpenos/farmacocinética
9.
J Proteome Res ; 20(4): 1874-1888, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33660510

RESUMEN

The CETSA and Thermal Proteome Profiling (TPP) analytical methods are invaluable for the study of protein-ligand interactions and protein stability in a cellular context. These tools have increasingly been leveraged in work ranging from understanding signaling paradigms to drug discovery. Consequently, there is an important need to optimize the data analysis pipeline that is used to calculate protein melt temperatures (Tm) and relative melt shifts from proteomics abundance data. Here, we report a user-friendly analysis of the melt shift calculation workflow where we describe the impact of each individual calculation step on the final output list of stabilized and destabilized proteins. This report also includes a description of how key steps in the analysis workflow quantitatively impact the list of stabilized/destabilized proteins from an experiment. We applied our findings to develop a more optimized analysis workflow that illustrates the dramatic sensitivity of chosen calculation steps on the final list of reported proteins of interest in a study and have made the R based program Inflect available for research community use through the CRAN repository [McCracken, N. Inflect: Melt Curve Fitting and Melt Shift Analysis. R package version 1.0.3, 2021]. The Inflect outputs include melt curves for each protein which passes filtering criteria in addition to a data matrix which is directly compatible with downstream packages such as UpsetR for replicate comparisons and identification of biologically relevant changes. Overall, this work provides an essential resource for scientists as they analyze data from TPP and CETSA experiments and implement their own analysis pipelines geared toward specific applications.


Asunto(s)
Análisis de Datos , Proteoma , Descubrimiento de Drogas , Proteómica , Programas Informáticos , Flujo de Trabajo
10.
J Biol Chem ; 295(48): 16219-16238, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878984

RESUMEN

Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.


Asunto(s)
Mutación Missense , Complejo de la Endopetidasa Proteasomal , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
11.
J Mol Cell Cardiol ; 148: 1-14, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853649

RESUMEN

RATIONALE: Among its many biological roles, fibroblast growth factor 2 (FGF2) protects the heart from dysfunction and damage associated with an ischemic attack. Our laboratory demonstrated that its protection against myocardial dysfunction occurs by the low molecular weight (LMW) isoform of FGF2, while the high molecular weight (HMW) isoforms are associated with a worsening in post-ischemic recovery of cardiac function. LMW FGF2-mediated cardioprotection is facilitated by activation of multiple kinases, including PKCalpha, PKCepsilon, and ERK, and inhibition of p38 and JNK. OBJECTIVE: Yet, the substrates of those kinases associated with LMW FGF2-induced cardioprotection against myocardial dysfunction remain to be elucidated. METHODS AND RESULTS: To identify substrates in LMW FGF2 improvement of post-ischemic cardiac function, mouse hearts expressing only LMW FGF2 were subjected to ischemia-reperfusion (I/R) injury and analyzed by a mass spectrometry (MS)-based quantitative phosphoproteomic strategy. MS analysis identified 50 phosphorylation sites from 7 sarcoendoplasmic reticulum (SR) proteins that were significantly altered in I/R-treated hearts only expressing LMW FGF2 compared to those hearts lacking FGF2. One of those phosphorylated SR proteins identified was phospholamban (PLB), which exhibited rapid, increased phosphorylation at Threonine-17 (Thr17) after I/R in hearts expressing only LMW FGF2; this was further validated using Selected Reaction Monitoring-based MS workflow. To demonstrate a mechanistic role of phospho-Thr17 PLB in LMW FGF2-mediated cardioprotection, hearts only expressing LMW FGF2 and those expressing only LMW FGF2 with a mutant PLB lacking phosphorylatable Thr17 (Thr17Ala PLB) were subjected to I/R. Hearts only expressing LMW FGF2 showed significantly improved recovery of cardiac function following I/R (p < 0.05), and this functional improvement was significantly abrogated in hearts expressing LMW FGF2 and Thr17Ala PLB (p < 0.05). CONCLUSION: The findings indicate that LMW FGF2 modulates intracellular calcium handling/cycling via regulatory changes in SR proteins essential for recovery from I/R injury, and thereby protects the heart from post-ischemic cardiac dysfunction.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cardiotónicos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/fisiopatología , Fosfoproteínas/metabolismo , Fosfotreonina/metabolismo , Proteómica , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Modelos Biológicos , Peso Molecular , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
J Biol Chem ; 294(1): 168-181, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420428

RESUMEN

Alterations in endoplasmic reticulum (ER) calcium (Ca2+) levels diminish insulin secretion and reduce ß-cell survival in both major forms of diabetes. The mechanisms responsible for ER Ca2+ loss in ß cells remain incompletely understood. Moreover, a specific role for either ryanodine receptor (RyR) or inositol 1,4,5-triphosphate receptor (IP3R) dysfunction in the pathophysiology of diabetes remains largely untested. To this end, here we applied intracellular and ER Ca2+ imaging techniques in INS-1 ß cells and isolated islets to determine whether diabetogenic stressors alter RyR or IP3R function. Our results revealed that the RyR is sensitive mainly to ER stress-induced dysfunction, whereas cytokine stress specifically alters IP3R activity. Consistent with this observation, pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R with xestospongin C prevented ER Ca2+ loss under ER and cytokine stress conditions, respectively. However, RyR blockade distinctly prevented ß-cell death, propagation of the unfolded protein response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-treated INS-1 ß cells and mouse islets and Akita islets. Monitoring at the single-cell level revealed that ER stress acutely increases the frequency of intracellular Ca2+ transients that depend on both ER Ca2+ leakage from the RyR and plasma membrane depolarization. Collectively, these findings indicate that RyR dysfunction shapes ER Ca2+ dynamics in ß cells and regulates both UPR activation and cell death, suggesting that RyR-mediated loss of ER Ca2+ may be an early pathogenic event in diabetes.


Asunto(s)
Señalización del Calcio , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Línea Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Insulina/patología , Compuestos Macrocíclicos/farmacología , Masculino , Ratones , Ratones Mutantes , Oxazoles/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-26307717

RESUMEN

The application of continuous flow-extractive desorption electrospray ionization (CF-EDESI), an ambient ionization source demonstrated previously for use with intact protein analysis, is expanded here for the coupling of reversed phase protein separations to mass spectrometry. This configuration allows the introduction of charging additives to enhance detection without affecting the chromatographic separation mechanism. Two demonstrations of the advantages of CF-EDESI are presented in this work. First, a proof-of- principle is presented to demonstrate the applicability of hyphenation of liquid chromatography (LC) to CF- EDESI. LC-CF-EDESI-MS has good sensitivity compared to LC-electrospray ionization (ESI)-mass spectrometry. Second, the supercharging mechanism investigated in CF-EDESI provides an insight into a highly debated supercharging process in ESI. The results indicate that the mechanism of protein charging seen in HPLC-CF-EDESI is different from supercharging phenomena in conventional ESI. The surface tension mechanism and binding mechanism may both contribute to protein supercharging in ESI.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía de Fase Inversa/instrumentación , Mapeo Peptídico/instrumentación , Proteínas/química , Manejo de Especímenes/instrumentación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Proteínas/análisis , Electricidad Estática
14.
ACS Appl Mater Interfaces ; 7(21): 11155-64, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25941752

RESUMEN

Phosphoproteomic analysis offers a unique view of cellular function and regulation in biological systems by providing global measures of a key cellular regulator in the form of protein phosphorylation. Understanding the phosphorylation changes between normal and diseased cells or tissues offers a window into the mechanism of disease and thus potential targets for therapeutic intervention. A key step in these studies is the enrichment of phosphorylated peptides that are typically separated and analyzed by using liquid chromatography mass spectrometry. The mesoporous titania beads/particles (e.g., Titansphere TiO2 beads from GL Sciences Inc., Japan) that are widely used for phosphopeptide enrichment are expensive and offer very limited opportunities for further performance improvement. Titiania nanotube arrays have shown promising characteristics for phosphopeptide separation. Here we report a proof-of-concept study to evaluate the efficacy of nanotubes on Ti-wire for phosphoproteomics research. We used titania nanotubes radially grown on titanium wires as well as the commercial beads to separate phosphopeptides generated from mouse liver complex tissue extracts. Our studies revealed that the nanotubes on metal wire provide comparable efficacy for enrichment of phophopeptides and offer an ease of use advantage versus mesoporous beads, thus having the potential to become a low cost and more practical material/methodology for phosphopeptide enrichment in biological studies.


Asunto(s)
Cromatografía/métodos , Nanopartículas del Metal/química , Nanotubos/química , Fosfopéptidos/aislamiento & purificación , Titanio/química , Nanopartículas del Metal/ultraestructura , Conformación Molecular , Nanotubos/ultraestructura , Nanocables/química , Nanocables/ultraestructura , Fosfopéptidos/química
15.
J Proteome Res ; 12(10): 4268-79, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24016359

RESUMEN

Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. An MS-based strategy utilizing an inexpensive acetone-based peptide-labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Because the chemistry for RABA labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 versus hearts expressing low-molecular-weight fibroblast growth factor-2 (LMW FGF2) to relate low-molecular-weight fibroblast growth factor-2 (LMW FGF2)-mediated cardioprotective phenomena induced by ischemia/reperfusion injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins, including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g., connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g., cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic studies to identify and verify biologically relevant phosphorylation changes in whole tissues.


Asunto(s)
Acetona/química , Daño por Reperfusión Miocárdica/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Cromatografía por Intercambio Iónico , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/aislamiento & purificación , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteoma/aislamiento & purificación , Proteómica , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Coloración y Etiquetado
16.
Langmuir ; 29(25): 8046-53, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23721220

RESUMEN

The extraction of active compounds from natural sources has shown to be an effective approach to drug discovery. However, the isolation and identification of natural products from complex extracts can be an arduous task. A novel approach to drug discovery is presented through the use of polymer screens functionalized with an l-lysine-d-alanine-d-alanine (Kaa) peptide to create new affinity capture mesh screen materials. The Kaa sequence is a well-characterized specific binding site for antibiotics that inhibit cell wall synthesis in Gram-positive bacteria. The detailed synthesis and characterization of these novel screen materials are presented in this work. Polypropylene mesh screens were first coated with a poly(acrylic acid) film by pulsed plasma polymerization. The synthesized Kaa peptide was then covalently attached to carboxylic acid groups through a condensation reaction. An analysis of captured compounds was performed in a rapid fashion with transmission-mode desorption electrospray ionization (TM-DESI) mass spectrometry. A proof of principle was demonstrated to show the ability of the novel affinity capture materials to select for a macrocyclic antibiotic, vancomycin, over a negative control compound, spectinomycin. With further development, this method may provide a rapid screening technique for new antibacterial compounds, for example, those extracted from natural product sources having a limited supply. Here, we show that the screen can capture vancomycin preferentially over spectinomycin in a spiked extract of tea leaves.


Asunto(s)
Antibacterianos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier
17.
Anal Chem ; 83(3): 643-7, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21155526

RESUMEN

Manipulation of protein charge states in electrospray ionization-mass spectrometry (ESI-MS) has implications for the study of intact proteins, protein-protein interactions, post-translational modifications, and protein sequencing. Control of these protein charge states is often difficult to achieve with conventional methods of analysis. A novel ambient ionization configuration, continuous flow-extractive desorption electrospray ionization (CF-EDESI), is presented as a means to control the charge state distribution of proteins. A key feature of the CF-EDESI technique is the continuous flow needle, which is a hypodermic needle presented orthogonal to the electrospray source and delivers a solvent flow containing analytes for extractive desorption ionization. With this source design, the successful manipulation of cytochrome c and lysozyme charge states with the use of different additives, such as acetic acid and sulfolane, was demonstrated. Results were compared to data obtained with conventional electrospray ionization. Good agreement with previously reported studies of cytochrome c unfolding/folding studies, performed by conventional ESI-MS, is evident. In addition to the protein analysis presented, the CF-EDESI-MS technique should be applicable for analyzing atypical analyte and solvent systems by mass spectrometry while maintaining optimal electrospray source conditions.


Asunto(s)
Proteínas/análisis , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones/química , Proteínas/química
18.
Chirality ; 23(1): 44-53, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21125685

RESUMEN

The effect of solvent systems on previously-reported ESI-MS based proton-assisted enantioselective molecular recognition phenomena of tartar emetic, L-antimony(III)-tartrate, was evaluated. This was achieved by carrying out a series of competitive binding experiments using chiral selectors, bis(sodium) D- and -L-antimony(III)-tartrates with chiral selectands, neutral side-chain amino acid enantiomeric isotopomers of alanine (Ala), valine (Val), leucine (Leu) and phenylalanine (Phe), in three different solvent systems, ACN/H(2)O (75/25 v/v), H(2)O (100%) and H(2)O/MeOH (25/75 v/v). Observations from these experiments suggest that the effect of solvent systems on previously reported proton-assisted chiral recognition capacity of D,L-antimony(III)-tartrates is small, but not negligible. It was observed that an ACN/H(2)O (75/25 v/v) solvent system facilitates and enhances the chiral discrimination capacity of protonated {[D,L-Sb(2)-tar(2)][H]}(-) ionic species. Further, amino acid enantiomers showed a general trend of increasing selectivity order, Val ≤ Ala < Leu ≈ Phe towards the protonated {[D,L-Sb(2)-tar(2)][H]}(-) ionic species which was independent of the solvent system employed. The lack of enantioselective binding for {[D,L-Sb(2)-tar(2)]}(2-) ionic species was consistently recorded in respective mass spectra from all performed experiments, which suggests that ESI-friendly solvent systems have no effect and do not influence this phenomenon.


Asunto(s)
Aminoácidos Neutros/química , Tartrato de Antimonio y Potasio/química , Unión Competitiva , Estructura Molecular , Protones , Solventes , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Tartratos/síntesis química , Tartratos/química
19.
Anal Chem ; 82(12): 5141-6, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20499879

RESUMEN

Negative-ionization mode electrospray ionization-mass spectrometry (ESI-MS) analysis of antimony(III)-tartrate in frequently used solvent systems, ACN/H(2)O and MeOH/H(2)O, revealed that the antimony(III)-tartrate dianion associates to solvent reaction products generated by radical formation and their subsequent recombination during the negative-mode electrospray process. A systematic increase and decrease in negative spray capillary voltage (SCV) from normal operational voltage ranges of a conventional quadrupole ion trap instrument during these analyses showed initially unobserved adduct ions to correspondingly increase and diminish in relative ion intensity. The identity of the adducted species, including products such as H(2)O(2), NCCH(2)CH(2)CN, and CH(2)(OH)(2), were confirmed by performing similar experiments with deuterated and nondeuterated solvent mixtures. Relative intensity dependence of these adducted ions was monitored as the volume composition of each solvent system was changed. It was clearly observed that the relative intensity of {[Sb(2)-tar(2)][H-O-O-H]}(2-) and {[Sb(2)-tar(2)][NC-CH(2)-CH(2)-CN]}(2-) adduct ions increased with the volume percent of H(2)O and CH(3)CN, respectively. Similarly, an increase in volume percent of CH(3)OH increased the relative intensity of {[Sb(2)-tar(2)][H-O-CH(2)-O-H]}(2-) adducted ions. On the basis of this evidence, it was proposed that homolytic cleavage of C-H bonds for CH(3)CN and CH(3)OH molecules, and O-H bonds for H(2)O molecules, produces a series of radicals during negative-ionization mode ESI, and subsequent self-recombination or cross-recombination of these radicals then occurs to form the neutral solvent products, which are observed in the mass spectra as [Sb(2)-tar(2)]-adducted ionic species. These findings provide new insight into processes, which are relevant to understanding the mechanism of electrospray ionization, a widely used technique.

20.
J Am Soc Mass Spectrom ; 20(11): 2100-5, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19683939

RESUMEN

The negative ion mode ESI mass spectral analysis of antimony(III)-D- and -L-tartrate ("tartar emetic"), in association with leucine enantiomeric isotopomers, revealed remarkable proton-assisted enantioselective molecular recognition phenomena. The current study infers that recognition of amino acids by antimony(III)-D,L-tartrate complexes requires that the chiral selector associate a proton to become enantioselective. The dianionic selector itself failed to show enantiomeric discrimination capacity. This observation was shown to be consistent both in solution-phase targeting full scan and gas-phase targeting collision threshold dissociation (CTD) experiments. Importantly, this disparity in enantioselective binding capacity between the dianionic and the protonated monoanionic representatives of antimony(III)-D- and -L-tartrates could only be clearly revealed by ESI-MS and tandem mass spectrometry experiments as described herein. This finding urges a more in-depth study of mechanisms associated with exhibited enantiomeric resolving capacity of antimony tartrates in HPLC and CE applications, as well as in former ESI-MS association studies.


Asunto(s)
Antimonio/química , Gases/química , Soluciones Farmacéuticas/química , Protones , Tartratos/química , Aminoácidos/química , Cinética , Leucina/química , Estructura Molecular , Transición de Fase , Unión Proteica , Soluciones , Espectrometría de Masa por Ionización de Electrospray/métodos , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA