Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 22(10): 12096-101, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921329

RESUMEN

We report the coherent spectral broadening of the output of a mode-locked VECSEL emitting 455 fs pulses at 1007 nm in the normal-dispersion regime. Subsequent compression of the fiber outputs using a transmission grating compressor produced 1.56 GHz trains of 150 fs pulses at 270 mW average power or 220 fs pulses at 520 mW average power. The system approaches the performance needed for a pump for coherent supercontinuum generation.

2.
Opt Express ; 22(6): 6919-24, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664040

RESUMEN

We describe time-resolved measurements of the evolution of the spectrum of radiation emitted by an optically-pumped continuous-wave InGaAs-GaAs quantum well laser, recorded as lasing builds up from noise to steady state. We extract a fitting parameter corresponding to the gain dispersion of the parabolic spectrum equal to -79 ± 30 fs2 and -36 ± 6 fs2 for a resonant and anti-resonant structure, respectively. Furthermore the recorded evolution of the spectrum allows for the calculation of an effective FWHM gain bandwidth for each structure, of 11 nm and 18 nm, respectively.

3.
Opt Express ; 21(2): 1599-605, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23389144

RESUMEN

We report a passively mode-locked vertical external cavity surface emitting laser (VECSEL) producing 400 fs pulses with 4.35 kW peak power. The average output power was 3.3 W and the VECSEL had a repetition rate of 1.67 GHz at a center wavelength of 1013 nm. A near-antiresonant, substrate-removed, 10 quantum well (QW) gain structure designed to enable femtosecond pulse operation is used. A SESAM which uses fast carrier recombination at the semiconductor surface and the optical Stark effect enables passive mode-locking. When 1 W of the VECSEL output is launched into a 2 m long photonic crystal fiber (PCF) with a 2.2 µm core, a supercontinuum spanning 175 nm, with average power 0.5 W is produced.


Asunto(s)
Rayos Láser , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo
4.
Opt Express ; 20(7): 7040-5, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22453384

RESUMEN

We report a harmonically mode-locked vertical external cavity surface emitting laser (VECSEL) producing 400 fs pulses at a repetition frequency of 175 GHz with an average output power of 300 mW. Harmonic mode-locking was established using a 300 µm thick intracavity single crystal diamond heat spreader in thermal contact with the front surface of the gain sample using liquid capillary bonding. The repetition frequency was set by the diamond microcavity and stable harmonic mode locking was achieved when the laser cavity length was tuned so that the laser operated on the 117th harmonic of the fundamental cavity. When an etalon placed intracavity next to the gain sample, but not in thermal contact was used pulse groups were observed. These contained 300 fs pulses with a spacing of 5.9 ps. We conclude that to achieve stable harmonic mode locking at repetition frequencies in the 100s of GHz range in a VECSEL there is a threshold pulse energy above which harmonic mode locking is achieved and below which groups of pulses are observed.


Asunto(s)
Láseres de Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
5.
Opt Express ; 19(23): 23453-9, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109222

RESUMEN

We report a repetition frequency tunable, passively mode-locked vertical-external-cavity surface-emitting semiconductor laser (VECSEL) with continuous repetition frequency tuning between 2.78 and 7.87 GHz using mechanical tuning of the laser cavity length. The laser emits near-transform-limited, sub-500-fs pulses over almost an octave tuning range between 2.78 and 5 GHz. At repetition rates above 6 GHz the pulse duration increases to ~2.5 ps. Over the entire tuning range the laser emits an average output power of 40 ± 5 mW in a fundamental transverse mode. The change in pulse duration highlights a change in the dominant modelocking mechanism which forms the pulses. At high repetition frequencies the pulse duration is set by the saturable absorber recovery time. At low repetition frequencies the fluence and peak intensity on the SESAM increases to a point where the fast pulse shaping mechanisms of the optical Stark effect and carrier thermalization dominate the pulse shortening.

6.
Opt Express ; 18(3): 2753-9, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20174104

RESUMEN

In 1832 Hamilton predicted conical refraction, concluding that if a beam propagates along an optic axis of a biaxial crystal, a hollow cone of light will emerge. Nearly two centuries on, cascade conical refraction involving multiple crystals has not been investigated. We empirically investigate a unique two-crystal configuration, and use this to demonstrate an ultra-efficient conical refraction Nd:KGd(WO(4))(2) laser providing multi-watt output with excellent beam quality independent of resonator design with a slope efficiency close to the theoretical maximum, offering a new route for power and brightness-scaling in solid-state bulk lasers.

7.
Opt Lett ; 33(23): 2797-9, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19037430

RESUMEN

We report on 260 fs transform-limited pulses generated directly by an optical Stark passively mode-locked semiconductor disk laser at a 1 GHz repetition rate. A surface recombination semiconductor saturable absorber mirror and a step-index gain structure are used. Numerical propagation modeling of the optical Stark effect confirms that this mechanism is able to form the pulses that we observe.

8.
Opt Lett ; 33(18): 2125-7, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794952

RESUMEN

We report what we believe to be the first demonstration of an all-semiconductor room-temperature terahertz time domain spectrometer. An optical Stark mode-locked vertical-external-cavity surface-emitting laser with 480 fs pulses at 1044 nm was used to illuminate low-temperature-grown photoconductive antennae with 5 mum-gap bow-tie-shaped electrodes. The coherently detected spectrum has a bandwidth close to 1 THz, in which water absorption lines at 0.555 and 0.751 THz can be resolved.

9.
Opt Express ; 14(21): 9611-6, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19529351

RESUMEN

Picosecond pulses at gigahertz repetition rates from two different passively mode-locked VECSELs are amplified to high powers in cascaded ytterbium doped fiber amplifiers. Small differences in pulse durations between the two VECSELs led to amplification in different nonlinear regimes. The shorter 0.5 ps pulses could be amplified to 53 W of average power in the parabolic pulse regime. This was confirmed by excellent pulse compression down to 110 fs. The VECSEL producing longer 4.6 ps pulses was amplified in an SPM dominated regime up to 200 W of average power but with poor recompressed pulse quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA