Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39496464

RESUMEN

BACKGROUND: Incomplete attack remission is the main cause of disability in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Apheresis therapies such as plasma exchange and immunoadsorption are widely used in neuroimmunology. Data on apheresis outcomes in MOGAD attacks remain limited. METHODS: We retrospectively evaluated all apheresis treated attacks occurring in patients with MOGAD between 2008 and 2023 at 18 Neuromyelitis Optica Study Group centres. Treatment response was categorised as complete, partial or no remission. Preattack and follow-up Expanded Disability Status Scale (EDSS) and visual Functional System Scores (FSS) were used to calculate absolute outcomes (ΔEDSS/Δvisual FSS). Predictors of complete remission were analysed using a generalised linear mixed model. RESULTS: Apheresis was used for 117/571 (20.5%) attacks in 85/209 (40.7%) patients. Attacks with simultaneous optic neuritis and myelitis were treated more often with apheresis (42.4%, n=14) than isolated myelitis (25.2%, n=35), cerebral manifestation (21.0%, n=17) or isolated optic neuritis (17.6%, n=51). Apheresis was initiated as first-line therapy in 12% (4.5 (IQR 0-11) days after attack onset), second-line therapy in 62% (15 (IQR 6.75-31) days) and third-line therapy in 26% (30 (IQR 19-42) days). Complete remission was achieved in 21%, partial remission in 70% and no remission in 9% of patients. First-line apheresis (OR 2.5, p=0.040) and concomitant disease-modifying therapy (OR 1.5, p=0.011) were associated with complete remission. Both parameters were also associated with a favourable ΔEDSS. No differences in outcomes were observed between the apheresis types. CONCLUSION: Apheresis is frequently used in MOGAD attacks. An early start as first-line therapy and concomitant disease-modifying therapy predict full attack recovery.

2.
Neurology ; 103(9): e209888, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39353149

RESUMEN

BACKGROUND AND OBJECTIVES: Attack prevention is crucial in managing neuromyelitis optica spectrum disorders (NMOSDs). Eculizumab (ECU), an inhibitor of the terminal complement cascade, was highly effective in preventing attacks in a phase III trial of aquaporin-4 (AQP4)-IgG seropositive(+) NMOSDs. In this article, we evaluated effectiveness and safety of ECU in routine clinical care. METHODS: We retrospectively evaluated patients with AQP4-IgG+ NMOSD treated with ECU between December 2014 and April 2022 at 20 German and 1 Austrian university center(s) of the Neuromyelitis Optica Study Group (NEMOS) by chart review. Primary outcomes were effectiveness (assessed using annualized attack rate [AAR], MRI activity, and disability changes [Expanded Disability Status Scale {EDSS}]) and safety (including adverse events, mortality, and attacks after meningococcal vaccinations), analyzed by descriptive statistics. RESULTS: Fifty-two patients (87% female, age 55.0 ± 16.3 years) received ECU for 16.2 (interquartile range [IQR] 9.6 - 21.7) months. Forty-five patients (87%) received meningococcal vaccination before starting ECU, 9 with concomitant oral prednisone and 36 without. Seven of the latter (19%) experienced attacks shortly after vaccination (median: 9 days, IQR 6-10 days). No postvaccinal attack occurred in the 9 patients vaccinated while on oral prednisone before starting ECU and in 25 (re-)vaccinated while on ECU. During ECU therapy, 88% of patients were attack-free. The median AAR decreased from 1.0 (range 0-4) in the 2 years preceding ECU to 0 (range 0-0.8; p < 0.001). The EDSS score from start to the last follow-up was stable (median 6.0), and the proportion of patients with new T2-enhancing or gadolinium-enhancing MRI lesions in the brain and spinal cord decreased. Seven patients (13%) experienced serious infections. Five patients (10%; median age 53.7 years) died on ECU treatment (1 from myocardial infarction, 1 from ileus with secondary sepsis, and 3 from systemic infection, including 1 meningococcal sepsis), 4 were older than 60 years and severely disabled at ECU treatment start (EDSS score ≥ 7). The overall discontinuation rate was 19%. DISCUSSION: Eculizumab proved to be effective in preventing NMOSD attacks. An increased risk of attacks after meningococcal vaccination before ECU start and potentially fatal systemic infections during ECU-particularly in patients with comorbidities-must be considered. Further research is necessary to explore optimal timing for meningococcal vaccinations. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that eculizumab reduces annualized attack rates and new MRI lesions in AQP4-IgG+ patients with NMOSD.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Adulto , Estudios Retrospectivos , Anciano , Inactivadores del Complemento/uso terapéutico , Resultado del Tratamiento , Estudios de Cohortes , Vacunas Meningococicas , Acuaporina 4/inmunología , Imagen por Resonancia Magnética
3.
Radiol Artif Intell ; 6(6): e230514, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39412405

RESUMEN

Artificial intelligence (AI) models often face performance drops after deployment to external datasets. This study evaluated the potential of a novel data augmentation framework based on generative adversarial networks (GANs) that creates synthetic patient image data for model training to improve model generalizability. Model development and external testing were performed for a given classification task, namely the detection of new fluid-attenuated inversion recovery lesions at MRI during longitudinal follow-up of patients with multiple sclerosis (MS). An internal dataset of 669 patients with MS (n = 3083 examinations) was used to develop an attention-based network, trained both with and without the inclusion of the GAN-based synthetic data augmentation framework. External testing was performed on 134 patients with MS from a different institution, with MR images acquired using different scanners and protocols than images used during training. Models trained using synthetic data augmentation showed a significant performance improvement when applied on external data (area under the receiver operating characteristic curve [AUC], 83.6% without synthetic data vs 93.3% with synthetic data augmentation; P = .03), achieving comparable results to the internal test set (AUC, 95.0%; P = .53), whereas models without synthetic data augmentation demonstrated a performance drop upon external testing (AUC, 93.8% on internal dataset vs 83.6% on external data; P = .03). Data augmentation with synthetic patient data substantially improved performance of AI models on unseen MRI data and may be extended to other clinical conditions or tasks to mitigate domain shift, limit class imbalance, and enhance the robustness of AI applications in medical imaging. Keywords: Brain, Brain Stem, Multiple Sclerosis, Synthetic Data Augmentation, Generative Adversarial Network Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Inteligencia Artificial , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Interpretación de Imagen Asistida por Computador/métodos , Prueba de Estudio Conceptual
4.
Sci Immunol ; 9(99): eadj8094, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331727

RESUMEN

Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.


Asunto(s)
Linfocitos T CD8-positivos , Esclerosis Múltiple , Linfocitos T CD8-positivos/inmunología , Humanos , Esclerosis Múltiple/inmunología , Femenino , Masculino , Adulto , Gemelos Monocigóticos , Persona de Mediana Edad , Análisis de la Célula Individual
5.
Artículo en Inglés | MEDLINE | ID: mdl-39084862

RESUMEN

BACKGROUND: Data on cognition in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are limited to studies with small sample sizes. Therefore, we aimed to analyse the extent, characteristics and the longitudinal course of potential cognitive deficits in patients with MOGAD. METHODS: The CogniMOG-Study is a prospective, longitudinal and multicentre observational study of 113 patients with MOGAD. Individual cognitive performance was assessed using the Paced Auditory Serial Addition Task (PASAT), the Symbol Digit Modalities Test (SDMT) and the Multiple Sclerosis Inventory Cognition (MuSIC), which are standardised against normative data from healthy controls. Cognitive performance was assessed at baseline and at 1-year and 2-year follow-up assessments. Multiple linear regression was used to analyse demographic and clinical predictors of cognitive deficits identified in previous correlation analyses. RESULTS: At baseline, the study sample of MOGAD patients showed impaired standardised performance on MuSIC semantic fluency (mean=-0.29, 95% CI (-0.47 to -0.12)) and MuSIC congruent speed (mean=-0.73, 95% CI (-1.23 to -0.23)). Around 1 in 10 patients showed deficits in two or more cognitive measures (11%). No decline in cognition was observed during the 1-year and 2-year follow-up period. Cerebral lesions were found to be negatively predictive for SDMT (B=-8.85, 95% CI (-13.57 to -4.14)) and MuSIC semantic fluency (B=-4.17, 95% CI (-6.10 to -2.25)) test performance. CONCLUSIONS: Based on these data, we conclude that MOGAD patients show reduced visuomotor processing speed and semantic fluency to the extent that the disease burden includes cerebral lesions.

6.
Brain ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021292

RESUMEN

Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.

7.
Mult Scler Relat Disord ; 88: 105729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901371

RESUMEN

BACKGROUND: Myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) is an autoinflammatory disease of the central nervous system. MOGAD often follows a relapsing course that can lead to severe disability, but monophasic disease is possible as well. Currently, there is an unmet clinical need for disease activity biomarkers in MOGAD. Serum neurofilament light chain (sNfL) is a sensitive biomarker for neuroaxonal damage. However, data on longitudinal change of sNfL as disease activity biomarker for MOGAD are scarce. OBJECTIVE: To describe the longitudinal course of sNfL in adult patients with MOGAD in an active as well as a stable disease state in relation to clinical parameters and serum MOG-IgG titers. METHODS: We conducted a retrospective, exploratory, monocentric cohort study of adult patients with MOGAD. Cohort 1 consisted of five patients in whom NfL was tested as part of their routine clinical workup, all of which had active disease (maximum 6 months since last attack, median 3 months). Cohort 2 comprised 13 patients, which were tested for NfL in the context of a longitudinal study at predefined time intervals, mostly during remission (median 10 months since last attack). sNfL was measured using single molecule array (Simoa) technology at least at two time points (median 3) within a median observation time of 5 months in cohort 1, and at baseline and after a median duration of 12 months in cohort 2. MOG-IgG titers were measured by a fixed cell-based assay. RESULTS: Change in sNfL correlated positively with change in MOG-IgG titers (rho=0.59, p = 0.027). The variability of sNfL (difference between highest and lowest level) during the observation period was higher in patients who had an attack within six months before baseline (median 37 [interquartile range [IQR] 10-64] pg/ml vs. 2.3 [IQR 1-5] pg/ml, p = 0.006). sNfL increased in patients with an attack during the observation period. Patients with baseline sNfL measurement within two weeks after attack symptom onset displayed relatively low initial sNfL with an increase afterwards. CONCLUSIONS: Longitudinal sNfL change correlates with MOG-IgG titer change and may be a promising biomarker candidate for disease activity in MOGAD. Increasing sNfL levels might be utilized to adjudicate suspected attacks. In acute attacks, sNfL increase may occur with a delay after symptom onset.


Asunto(s)
Autoanticuerpos , Biomarcadores , Glicoproteína Mielina-Oligodendrócito , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/sangre , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Estudios Longitudinales , Estudios Retrospectivos , Autoanticuerpos/sangre , Inmunoglobulina G/sangre , Enfermedades Autoinmunes Desmielinizantes SNC/sangre , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/diagnóstico , Progresión de la Enfermedad , Adulto Joven
8.
Front Neurol ; 15: 1335408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765263

RESUMEN

Objectives: Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Increasing evidence indicates additional peripheral nerve involvement in early and chronic disease stages. To investigate the evolution of peripheral nerve changes in patients first diagnosed with MS using quantitative MR neurography. Materials and methods: This prospective study included 19 patients with newly diagnosed MS according to the revised McDonald criteria (16 female, mean 30.2 ± 7.1 years) and 19 age-/sex-matched healthy volunteers. High-resolution 3 T MR neurography of the sciatic nerve using a quantitative T2-relaxometry sequence was performed, which yielded the biomarkers of T2 relaxation time (T2app) and proton spin density (PSD). Follow-up scans of patients were performed after median of 12 months (range 7-16). Correlation analyses considered clinical symptoms, intrathecal immunoglobulin synthesis, nerve conduction study, and lesion load on brain and spine MRI. Results: Patients showed increased T2app and decreased PSD compared to healthy controls at initial diagnosis and follow-up (p < 0.001 each). Compared to the initial scan, T2app further increased in patients at follow-up (p = 0.003). PSD further declined by at least 10% in 9/19 patients and remained stable in another 9/19 patients. Correlation analyses did not yield significant results. Conclusion: Peripheral nerve involvement in MS appears at initial diagnosis and continues to evolve within 1 year follow-up with individual dynamics. Quantitative MRN provides non-invasive biomarkers to detect and monitor peripheral nerve changes in MS.

9.
Brain Commun ; 6(2): fcae106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576796

RESUMEN

Recent reports indicated that myelin oligodendrocyte glycoprotein antibody-associated disease might be a rare complication after severe acute respiratory syndrome coronavirus 2 infection or vaccination. It is unclear whether this is an unspecific sequel of infection or vaccination or caused by possible immunological cross-reactivity of severe acute respiratory syndrome coronavirus 2 proteins and myelin oligodendrocyte glycoprotein. The aim of this study was therefore to elucidate whether there is an immunological cross-reactivity between severe acute respiratory syndrome coronavirus 2 spike or nucleocapsid proteins and myelin oligodendrocyte glycoprotein and to explore the relation of antibody responses against myelin oligodendrocyte glycoprotein and severe acute respiratory syndrome coronavirus 2 and other coronaviruses. We analysed serum samples from patients with severe acute respiratory syndrome coronavirus 2 infection and neurological symptoms with (myelin oligodendrocyte glycoprotein antibody-associated disease, n = 12) or without myelin oligodendrocyte glycoprotein-antibodies (n = 10); severe acute respiratory syndrome coronavirus 2 infection without neurological symptoms (n = 32); vaccinated patients with no history of severe acute respiratory syndrome coronavirus 2 infection and neurological symptoms with (myelin oligodendrocyte glycoprotein antibody-associated disease, n = 10) or without myelin oligodendrocyte glycoprotein-antibodies (n = 9); and severe acute respiratory syndrome coronavirus 2 negative/naïve unvaccinated patients with neurological symptoms with (myelin oligodendrocyte glycoprotein antibody-associated disease, n = 47) or without myelin oligodendrocyte glycoprotein-antibodies (n = 20). All samples were analysed for serum antibody responses to myelin oligodendrocyte glycoprotein, severe acute respiratory syndrome coronavirus 2, and other common coronaviruses (CoV-229E, CoV-HKU1, CoV-NL63 and CoV-OC43). Based on sample amount and antibody titres, 21 samples were selected for analysis of antibody cross-reactivity between myelin oligodendrocyte glycoprotein and severe acute respiratory syndrome coronavirus 2 spike and nucleocapsid proteins using affinity purification and pre-absorption. Whereas we found no association of immunoglobulin G and A myelin oligodendrocyte glycoprotein antibodies with coronavirus antibodies, infections with severe acute respiratory syndrome coronavirus 2 correlated with an increased immunoglobulin M myelin oligodendrocyte glycoprotein antibody response. Purified antibodies showed no cross-reactivity between severe acute respiratory syndrome coronavirus 2 spike protein and myelin oligodendrocyte glycoprotein. However, one sample of a patient with myelin oligodendrocyte glycoprotein antibody-associated disease following severe acute respiratory syndrome coronavirus 2 infection showed a clear immunoglobulin G antibody cross-reactivity to severe acute respiratory syndrome coronavirus 2 nucleocapsid protein and myelin oligodendrocyte glycoprotein. This patient was also seropositive for other coronaviruses and showed immunological cross-reactivity of severe acute respiratory syndrome coronavirus 2 and CoV-229E nucleocapsid proteins. Overall, our results indicate that an immunoglobulin G antibody cross-reactivity between myelin oligodendrocyte glycoprotein and severe acute respiratory syndrome coronavirus 2 proteins is rare. The presence of increased myelin oligodendrocyte glycoprotein-immunoglobulin M antibodies after severe acute respiratory syndrome coronavirus 2 infection may either be a consequence of a previous infection with other coronaviruses or arise as an unspecific sequel after viral infection. Furthermore, our data indicate that myelin oligodendrocyte glycoprotein-immunoglobulin A and particularly myelin oligodendrocyte glycoprotein-immunoglobulin M antibodies are a rather unspecific sequel of viral infections. Finally, our findings do not support a causative role of coronavirus infections for the presence of myelin oligodendrocyte glycoprotein-immunoglobulin G antibodies.

11.
J Autoimmun ; 146: 103234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663202

RESUMEN

Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.


Asunto(s)
Narcolepsia , Análisis de la Célula Individual , Transcriptoma , Humanos , Narcolepsia/genética , Narcolepsia/líquido cefalorraquídeo , Masculino , Femenino , Adulto , Orexinas/líquido cefalorraquídeo , Orexinas/genética , Perfilación de la Expresión Génica , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Cadenas beta de HLA-DQ/genética , Persona de Mediana Edad , Adulto Joven
12.
Sci Transl Med ; 16(740): eade8560, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536936

RESUMEN

One of the biggest challenges in managing multiple sclerosis is the heterogeneity of clinical manifestations and progression trajectories. It still remains to be elucidated whether this heterogeneity is reflected by discrete immune signatures in the blood as a surrogate of disease pathophysiology. Accordingly, individualized treatment selection based on immunobiological principles is still not feasible. Using two independent multicentric longitudinal cohorts of patients with early multiple sclerosis (n = 309 discovery and n = 232 validation), we were able to identify three distinct peripheral blood immunological endophenotypes by a combination of high-dimensional flow cytometry and serum proteomics, followed by unsupervised clustering. Longitudinal clinical and paraclinical follow-up data collected for the cohorts revealed that these endophenotypes were associated with disease trajectories of inflammation versus early structural damage. Investigating the capacity of immunotherapies to normalize endophenotype-specific immune signatures revealed discrete effect sizes as illustrated by the limited effect of interferon-ß on endophenotype 3-related immune signatures. Accordingly, patients who fell into endophenotype 3 subsequently treated with interferon-ß exhibited higher disease progression and MRI activity over a 4-year follow-up compared with treatment with other therapies. We therefore propose that ascertaining a patient's blood immune signature before immunomodulatory treatment initiation may facilitate prediction of clinical disease trajectories and enable personalized treatment decisions based on pathobiological principles.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/tratamiento farmacológico , Endofenotipos , Interferón beta/uso terapéutico
13.
EMBO Mol Med ; 16(3): 547-574, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316934

RESUMEN

Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.


Asunto(s)
Células Caliciformes , Lupus Eritematoso Sistémico , Humanos , Células Caliciformes/patología , Intestinos/patología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Diferenciación Celular , Organoides
14.
Clin Cancer Res ; 30(14): 2974-2985, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295147

RESUMEN

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single-nucleotide variants (SNV), and small insertions/deletions (indel) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), nonmalignant (n = 17), and nondiagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/or cancer-specific alterations in 75.0% (n = 24) of glioblastoma and 52.6% (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26%-48%) and SNVs at predefined gene loci (44%), followed by SNVs/indels identified via uninformed variant calling (8%-14%). A molecular-guided tumor classification was possible for 23.5% (n = 4) of nondiagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma. See related commentary by Abdullah, p. 2860.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Variaciones en el Número de Copia de ADN , Glioma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Glioma/genética , Glioma/líquido cefalorraquídeo , Glioma/patología , Glioma/diagnóstico , Femenino , Persona de Mediana Edad , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anciano , Adulto , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/patología , Polimorfismo de Nucleótido Simple , Adulto Joven , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico
15.
J Neurol ; 271(1): 141-176, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37676297

RESUMEN

This manuscript presents practical recommendations for managing acute attacks and implementing preventive immunotherapies for neuromyelitis optica spectrum disorders (NMOSD), a rare autoimmune disease that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. The pillars of NMOSD therapy are attack treatment and attack prevention to minimize the accrual of neurological disability. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenicity. Recent advances in understanding NMOSD have led to the development of new therapies and the completion of randomized controlled trials. Four preventive immunotherapies have now been approved for AQP4-IgG-positive NMOSD in many regions of the world: eculizumab, ravulizumab - most recently-, inebilizumab, and satralizumab. These new drugs may potentially substitute rituximab and classical immunosuppressive therapies, which were as yet the mainstay of treatment for both, AQP4-IgG-positive and -negative NMOSD. Here, the Neuromyelitis Optica Study Group (NEMOS) provides an overview of the current state of knowledge on NMOSD treatments and offers statements and practical recommendations on the therapy management and use of all available immunotherapies for this disease. Unmet needs and AQP4-IgG-negative NMOSD are also discussed. The recommendations were developed using a Delphi-based consensus method among the core author group and at expert discussions at NEMOS meetings.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/terapia , Neuromielitis Óptica/tratamiento farmacológico , Acuaporina 4 , Médula Espinal , Sistema Nervioso Central , Autoanticuerpos , Inmunoglobulina G
16.
Eur J Neurol ; 31(2): e16126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932921

RESUMEN

BACKGROUND AND PURPOSE: Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS). However, there is increasing evidence of peripheral nerve involvement. This study aims to characterize the pattern of peripheral nerve changes in patients with newly diagnosed MS using quantitative magnetic resonance (MR) neurography. METHODS: In this prospective study, 25 patients first diagnosed with MS according to the revised McDonald criteria (16 female, mean age = 32.8 ± 10.6 years) and 14 healthy controls were examined with high-resolution 3-T MR neurography of the sciatic nerve using diffusion kurtosis imaging (DKI; 20 diffusional directions, b = 0, 700, 1200 s/mm2 ) and magnetization transfer imaging (MTI). In total, 15 quantitative MR biomarkers were analyzed and correlated with clinical symptoms, intrathecal immunoglobulin synthesis, electrophysiology, and lesion load on brain and spine MR imaging. RESULTS: Patients showed decreased fractional anisotropy (mean = 0.51 ± 0.04 vs. 0.56 ± 0.03, p < 0.001), extra-axonal tortuosity (mean = 2.32 ± 0.17 vs. 2.49 ± 0.17, p = 0.008), and radial kurtosis (mean = 1.40 ± 0.23 vs. 1.62 ± 0.23, p = 0.014) and higher radial diffusivity (mean = 1.09 ∙ 10-3 mm2 /s ± 0.16 vs. 0.98 ± 0.11 ∙ 10-3 mm2 /s, p = 0.036) than controls. Groups did not differ in MTI. No significant association was found between MR neurography markers and clinical/laboratory parameters or CNS lesion load. CONCLUSIONS: This study provides further evidence of peripheral nerve involvement in MS already at initial diagnosis. The characteristic pattern of DKI parameters indicates predominant demyelination and suggests a primary coaffection of the peripheral nervous system in MS. This first human study using DKI for peripheral nerves shows its potential and clinical feasibility in providing novel biomarkers.


Asunto(s)
Esclerosis Múltiple , Humanos , Femenino , Adulto Joven , Adulto , Estudios Prospectivos , Esclerosis Múltiple/diagnóstico por imagen , Nervios Periféricos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Nervio Ciático , Biomarcadores , Espectroscopía de Resonancia Magnética
17.
J Neurol ; 271(1): 59-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37999770

RESUMEN

BACKGROUND: Information on cerebrospinal fluid (CSF) findings in patients with neurological manifestations in post-COVID-19 syndrome is scarce. METHODS: Retrospective evaluation of 84 CSF samples in patients fulfilling post-COVID-19 criteria in two neurological post-COVID-19 outpatient clinics. RESULTS: In 68% of samples, all CSF parameters were normal. The most frequent pathological CSF finding was elevation of total protein (median total protein 33.3 mg/dl [total range 18.5-116.2]) in 20 of 83 (24%) samples. The second most prevalent pathological finding was a blood-CSF barrier dysfunction as measured by elevation of QAlb (median QAlb 4.65 [2.4-13.2]) in 11/84 (13%). Pleocytosis was found in only 5/84 (6%) samples and was mild in all of them. CSF-restricted oligoclonal bands were found in 5/83 (6%) samples. Anti-neuronal autoantibodies in CSF were negative in most cases, whilst 12/68 (18%) samples were positive for anti-myelin autoantibodies in serum. PCR for herpesviridae (HSV-1/-2, VZV, EBV, CMV, HHV6) showed, if at all, only weakly positive results in CSF or EDTA whole blood/plasma. CONCLUSIONS: The majority of samples did not show any pathologies. The most frequent findings were elevation of total protein and blood-CSF barrier dysfunction with no signs of intrathecal inflammation. CSF analysis still keeps its value for exclusion of differential diagnoses.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Estudios Retrospectivos , COVID-19/complicaciones , Barrera Hematoencefálica , Autoanticuerpos , Líquido Cefalorraquídeo
18.
Ann Neurol ; 95(4): 720-732, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086777

RESUMEN

OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.


Asunto(s)
Neuromielitis Óptica , Humanos , Acuaporina 4 , Glicoproteína Mielina-Oligodendrócito , Autoanticuerpos , Inmunoglobulina G , Recurrencia
19.
Ther Adv Neurol Disord ; 16: 17562864231180730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780055

RESUMEN

Background: While substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS), a high percentage of treated patients still show progression and persistent inflammatory activity. Autologous haematopoietic stem cell transplantation (AHSCT) aims at eliminating a pathogenic immune repertoire through intense short-term immunosuppression that enables subsequent regeneration of a new and healthy immune system to re-establish immune tolerance for a long period of time. A number of mostly open-label, uncontrolled studies conducted over the past 20 years collected about 4000 cases. They uniformly reported high efficacy of AHSCT in controlling MS inflammatory disease activity, more markedly beneficial in relapsing-remitting MS. Immunological studies provided evidence for qualitative immune resetting following AHSCT. These data and improved safety profiles of transplantation procedures spurred interest in using AHSCT as a treatment option for MS. Objective: To develop expert consensus recommendations on AHSCT in Germany and outline a registry study project. Methods: An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of virtual meetings. Results: We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS based on the Swiss criteria. Current data indicate that patients who are most likely to benefit from AHSCT have relapsing-remitting MS and are young, ambulatory and have high disease activity. Treatment data with AHSCT will be collected within the German REgistry Cohort of autologous haematopoietic stem CeLl trAnsplantation In MS (RECLAIM). Conclusion: Further clinical trials, including registry-based analyses, are urgently needed to better define the patient characteristics, efficacy and safety profile of AHSCT compared with other high-efficacy therapies and to optimally position it as a treatment option in different MS disease stages.


Autologous haematopoietic stem cell transplantation for multiple sclerosis Substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS) during the last 20 years. However, in a relevant percentage of patients, the disease cannot completely be contained. Autologous haematopoietic stem cell transplantation (AHSCT) enables rebuilding of a new and healthy immune system and to potentially stop the autoimmune disease process for a long time. A number of studies documenting 4000 cases cumulatively over the past 20 years reported high efficacy of AHSCT in controlling MS inflammatory disease activity. These data and improved safety profiles of the treatment procedures spurred interest in using AHSCT as a treatment option for MS. An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of video calls to develop recommendations and outline a registry study project. We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS. Current data indicate that patients are most likely to benefit from AHSCT if they are young, ambulatory, with high disease activity, that is, relapses or new magnetic resonance imaging (MRI) lesions. Treatment data with AHSCT will be collected within the German REgistry Cohort of autoLogous haematopoietic stem cell transplantation MS (RECLAIM). Further clinical trials including registry-based analyses and systematic follow-up are urgently needed to better define the optimal patient characteristics as well as the efficacy and safety profile of AHSCT compared with other high-efficacy therapies. These will help to position AHSCT as a treatment option in different MS disease stages.

20.
Ther Adv Neurol Disord ; 16: 17562864231197309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692259

RESUMEN

Background: Depression has a major impact on the disease burden of multiple sclerosis (MS). Analyses of overlapping MS and depression risk factors [smoking, vitamin D (25-OH-VD) and Epstein-Barr virus (EBV) infection] and sex, age, disease characteristics and neuroimaging features associated with depressive symptoms in early MS are scarce. Objectives: To assess an association of MS risk factors with depressive symptoms within the German NationMS cohort. Design: Cross-sectional analysis within a multicenter observational study. Methods: Baseline data of n = 781 adults with newly diagnosed clinically isolated syndrome or relapsing-remitting MS qualified for analysis. Global and region-specific magnetic resonance imaging (MRI)-volumetry parameters were available for n = 327 patients. Association of demographic factors, MS characteristics and risk factors [sex, age, smoking, disease course, presence of current relapse, expanded disability status scale (EDSS) score, fatigue (fatigue scale motor cognition), 25-OH-VD serum concentration, EBV nuclear antigen-1 IgG (EBNA1-IgG) serum levels] and depressive symptoms (Beck Depression Inventory-II, BDI-II) was tested as a primary outcome by multivariable linear regression. Non-parametric correlation and group comparison were performed for associations of MRI parameters and depressive symptoms. Results: Mean age was 34.3 years (95% confidence interval: 33.6-35.0). The female-to-male ratio was 2.3:1. At least minimal depressive symptoms (BDI-II > 8) were present in n = 256 (32.8%), 25-OH-VD deficiency (<20 ng/ml) in n = 398 (51.0%), n = 246 (31.5%) participants were smokers. Presence of current relapse [coefficient (c) = 1.48, p = 0.016], more severe fatigue (c = 0.26, p < 0.0001), lower 25-OH-VD (c = -0.03, p = 0.034) and smoking (c = 0.35, p = 0.008) were associated with higher BDI-II scores. Sex, age, disease course, EDSS, month of visit, EBNA1-IgG levels and brain volumes at baseline were not. Conclusion: Depressive symptoms need to be assessed in early MS. Patients during relapse seem especially vulnerable to depressive symptoms. Contributing factors such as fatigue, vitamin D deficiency and smoking, could specifically be targeted in future interventions and should be investigated in prospective studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA