Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pediatrics ; 154(5)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350745

RESUMEN

BACKGROUND: Data describing respiratory syncytial virus (RSV) neutralizing antibody (nAb) levels for nirsevimab, a recently approved, extended half-life, anti-RSV fusion protein (F protein) monoclonal antibody, relative to the previous standard of care, palivizumab, have not been reported. METHODS: MEDLEY was a randomized, palivizumab-controlled, phase 2/3 study of nirsevimab during 2 RSV seasons (season 1 and 2) in infants born preterm (≤35 weeks' gestational age; dosed season 1 only) or with congenital heart disease or chronic lung disease of prematurity (dosed seasons 1 and 2). Participants were randomly assigned to receive a single dose of nirsevimab followed by 4 monthly placebo doses, or 5 once-monthly doses of palivizumab. Anti-RSV F protein serology (ie, levels of prefusion [pre-F]/postfusion [post-F] conformation antibodies), nirsevimab and palivizumab concentrations, and RSV nAbs were measured in participant serum collected at baseline (pre-dose) and days 31, 151, and 361. RESULTS: Serologic data were similar in seasons 1 and 2. Nirsevimab predominately conferred pre-F antibodies, whereas palivizumab conferred pre-F and post-F antibodies. Nirsevimab and palivizumab serum concentrations highly correlated with nAb levels in both seasons. In season 1, nAb levels in nirsevimab recipients were highest in day 31 samples and gradually declined but remained 17-fold above baseline at day 361. nAb levels in palivizumab recipients increased incrementally with monthly doses to day 151. nAb levels followed similar patterns in season 2. nAb levels were ∼10-fold higher with nirsevimab compared with palivizumab across both seasons. CONCLUSIONS: Nirsevimab prophylaxis confers ∼10-fold higher and more sustained RSV nAb levels relative to palivizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Antivirales , Palivizumab , Infecciones por Virus Sincitial Respiratorio , Humanos , Palivizumab/administración & dosificación , Palivizumab/uso terapéutico , Anticuerpos Neutralizantes/sangre , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antivirales/administración & dosificación , Antivirales/uso terapéutico , Recién Nacido , Masculino , Femenino , Lactante , Método Doble Ciego , Virus Sincitial Respiratorio Humano/inmunología , Recien Nacido Prematuro , Anticuerpos Antivirales/sangre , Proteínas Virales de Fusión/inmunología
2.
Vaccine ; 42(24): 126276, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39241352

RESUMEN

BACKGROUND: Nirsevimab is an extended half-life monoclonal antibody (mAb) licensed for the prevention of respiratory syncytial virus (RSV)-associated lower respiratory tract disease in neonates, infants and medically vulnerable children. We characterized RSV isolates recovered from participants enrolled in MEDLEY: a randomized, palivizumab-controlled phase 2/3 trial of nirsevimab in infants born preterm and/or with congenital heart disease or chronic lung disease of prematurity. METHODS: Participants were assessed in two RSV seasons (Season 1 and 2). Season 1 participants were randomized (2:1) to receive a single dose of nirsevimab (50 mg if weight <5 kg or 100 mg if weight ≥5 kg in Season 1; 200 mg in Season 2) followed by four monthly doses of placebo, or five once-monthly doses of palivizumab (15 mg/kg weight per dose). Season 2 participants continued nirsevimab and placebo (nirsevimab/nirsevimab) or were re-randomized (1:1) to switch to nirsevimab (palivizumab/nirsevimab) or continue palivizumab (palivizumab/palivizumab). Cases of RSV infection were identified by central testing of nasal swabs from participants seeking medical attention for respiratory illnesses. Nirsevimab and palivizumab binding site substitutions were assessed via microneutralization assay. RESULTS: Twenty-five cases of confirmed RSV infection were observed during the trial and sequenced: 12 in nirsevimab recipients and 10 in palivizumab recipients during Season 1, and 1 case in each Season 2 group. Molecular sequencing of RSV A (n = 14) isolates detected no nirsevimab binding site substitutions, and 3 palivizumab neutralization-resistant substitutions (Lys272Met, Lys272Thr, Ser275Leu). The nirsevimab binding site Ile206Met:Gln209Arg and Ile206Met:Gln209Arg:Ser211Asn substitutions were the only anti-RSV mAb binding site substitutions detected among RSV B isolates (n = 11). Nirsevimab neutralized all nirsevimab and palivizumab binding site substitutions in RSV A and B isolates recovered from MEDLEY participants. CONCLUSION: No binding site substitution detected during MEDLEY affected RSV susceptibility to nirsevimab neutralization.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antivirales , Palivizumab , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Palivizumab/uso terapéutico , Palivizumab/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Lactante , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Método Doble Ciego , Masculino , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/genética , Femenino , Recién Nacido , Anticuerpos Antivirales/inmunología , Preescolar , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
3.
Front Immunol ; 15: 1401728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827749

RESUMEN

Background: Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now widespread; however, the degree of cross-immunity between SARS-CoV-2 and endemic, seasonal human coronaviruses (HCoVs) remains unclear. Methods: SARS-CoV-2 and HCoV cross-immunity was evaluated in adult participants enrolled in a US sub-study in the phase III, randomized controlled trial (NCT04516746) of AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination for one-year. Anti-HCoV spike-binding antibodies against HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63 were evaluated in participants following study dosing and, in the AZD1222 group, after a non-study third-dose booster. Timing of SARS-CoV-2 seroconversion (assessed via anti-nucleocapsid antibody levels) and incidence of COVID-19 were evaluated in those who received AZD1222 primary-series by baseline anti-HCoV titers. Results: We evaluated 2,020/21,634 participants in the AZD1222 group and 1,007/10,816 in the placebo group. At the one-year data cutoff (March 11, 2022) mean duration of follow up was 230.9 (SD: 106.36, range: 1-325) and 94.3 (74.12, 1-321) days for participants in the AZD1222 (n = 1,940) and placebo (n = 962) groups, respectively. We observed little elevation in anti-HCoV humoral titers post study-dosing or post-boosting, nor evidence of waning over time. The occurrence and timing of SARS-CoV-2 seroconversion and incidence of COVID-19 were not largely impacted by baseline anti-HCoV titers. Conclusion: We found limited evidence for cross-immunity between SARS-CoV-2 and HCoVs following AZD1222 primary series and booster vaccination. Susceptibility to future emergence of novel coronaviruses will likely persist despite a high prevalence of SARS-CoV-2 immunity in global populations.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , ChAdOx1 nCoV-19 , Inmunidad Humoral , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , ChAdOx1 nCoV-19/inmunología , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Inmunidad Humoral/efectos de los fármacos , Reacciones Cruzadas/inmunología , Estaciones del Año , Adulto Joven , Vacunación , Método Doble Ciego
6.
Nat Commun ; 15(1): 3083, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600104

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection in young children and the second leading cause of infant death worldwide. While global circulation has been extensively studied for respiratory viruses such as seasonal influenza, and more recently also in great detail for SARS-CoV-2, a lack of global multi-annual sampling of complete RSV genomes limits our understanding of RSV molecular epidemiology. Here, we capitalise on the genomic surveillance by the INFORM-RSV study and apply phylodynamic approaches to uncover how selection and neutral epidemiological processes shape RSV diversity. Using complete viral genome sequences, we show similar patterns of site-specific diversifying selection among RSVA and RSVB and recover the imprint of non-neutral epidemic processes on their genealogies. Using a phylogeographic approach, we provide evidence for air travel governing the global patterns of RSVA and RSVB spread, which results in a considerable degree of phylogenetic mixing across countries. Our findings highlight the potential of systematic global RSV genomic surveillance for transforming our understanding of global RSV spread.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Lactante , Niño , Humanos , Preescolar , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Filogenia , Virus Sincitial Respiratorio Humano/genética , Genómica , Infecciones del Sistema Respiratorio/epidemiología
7.
Front Immunol ; 14: 1283120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901217

RESUMEN

Introduction: Nirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection. Methods: Nirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc γ receptors (FcγRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV. Results: Nirsevimab and MEDI8897* exhibited binding to a range of FcγRs, with expected reductions in FcγR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model. Conclusion: Nirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Animales , Palivizumab/uso terapéutico , Anticuerpos Antivirales , Proteínas del Sistema Complemento/uso terapéutico , Sigmodontinae
8.
Nat Commun ; 14(1): 4347, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468530

RESUMEN

Nirsevimab is a monoclonal antibody that binds to the respiratory syncytial virus (RSV) fusion protein. During the Phase 2b (NCT02878330) and MELODY (NCT03979313) clinical trials, infants received one dose of nirsevimab or placebo before their first RSV season. In this pre-specified analysis, isolates from RSV infections were subtyped, sequenced and analyzed for nirsevimab binding site substitutions; subsequently, recombinant RSVs were engineered for microneutralization susceptibility testing. Here we show that the frequency of infections caused by subtypes A and B is similar across and within the two trials. In addition, RSV A had one and RSV B had 10 fusion protein substitutions occurring at >5% frequency. Notably, RSV B binding site substitutions were rare, except for the highly prevalent I206M:Q209R, which increases nirsevimab susceptibility; RSV B isolates from two participants had binding site substitutions that reduce nirsevimab susceptibility. Overall, >99% of isolates from the Phase 2b and MELODY trials retained susceptibility to nirsevimab.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Proteínas Recombinantes/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/epidemiología
9.
Nat Med ; 29(5): 1172-1179, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095249

RESUMEN

Nirsevimab is an extended half-life monoclonal antibody specific for the prefusion conformation of the respiratory syncytial virus (RSV) F protein, which has been studied in preterm and full-term infants in the phase 2b and phase 3 MELODY trials. We analyzed serum samples collected from 2,143 infants during these studies to characterize baseline levels of RSV-specific immunoglobulin G antibodies and neutralizing antibodies (NAbs), duration of RSV NAb levels following nirsevimab administration, the risk of RSV exposure during the first year of life and the infant's adaptive immune response to RSV following nirsevimab administration. Baseline RSV antibody levels varied widely; consistent with reports that maternal antibodies are transferred late in the third trimester, preterm infants had lower baseline RSV antibody levels than full-term infants. Nirsevimab recipients had RSV NAb levels >140-fold higher than baseline at day 31 and remained >50-fold higher at day 151 and >7-fold higher at day 361. Similar seroresponse rates to the postfusion form of RSV F protein in nirsevimab recipients (68-69%) compared with placebo recipients (63-70%; not statistically significant) suggest that while nirsevimab protects from RSV disease, it still allows an active immune response. In summary, nirsevimab provided sustained, high levels of NAb throughout an infant's first RSV season and prevented RSV disease while allowing the development of an immune response to RSV.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunidad
10.
Lancet Infect Dis ; 23(7): 856-866, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36940703

RESUMEN

BACKGROUND: Nirsevimab is an extended half-life monoclonal antibody to the respiratory syncytial virus (RSV) fusion protein that has been developed to protect infants for an entire RSV season. Previous studies have shown that the nirsevimab binding site is highly conserved. However, investigations of the geotemporal evolution of potential escape variants in recent (ie, 2015-2021) RSV seasons have been minimal. Here, we examine prospective RSV surveillance data to assess the geotemporal prevalence of RSV A and B, and functionally characterise the effect of the nirsevimab binding-site substitutions identified between 2015 and 2021. METHODS: We assessed the geotemporal prevalence of RSV A and B and nirsevimab binding-site conservation between 2015 and 2021 from three prospective RSV molecular surveillance studies (the US-based OUTSMART-RSV, the global INFORM-RSV, and a pilot study in South Africa). Nirsevimab binding-site substitutions were assessed in an RSV microneutralisation susceptibility assay. We contextualised our findings by assessing fusion-protein sequence diversity from 1956 to 2021 relative to other respiratory-virus envelope glycoproteins using RSV fusion protein sequences published in NCBI GenBank. FINDINGS: We identified 5675 RSV A and RSV B fusion protein sequences (2875 RSV A and 2800 RSV B) from the three surveillance studies (2015-2021). Nearly all (25 [100%] of 25 positions of RSV A fusion proteins and 22 [88%] of 25 positions of RSV B fusion proteins) amino acids within the nirsevimab binding site remained highly conserved between 2015 and 2021. A highly prevalent (ie, >40·0% of all sequences) nirsevimab binding-site Ile206Met:Gln209Arg RSV B polymorphism arose between 2016 and 2021. Nirsevimab neutralised a diverse set of recombinant RSV viruses, including new variants containing binding-site substitutions. RSV B variants with reduced susceptibility to nirsevimab neutralisation were detected at low frequencies (ie, prevalence <1·0%) between 2015 and 2021. We used 3626 RSV fusion-protein sequences published in NCBI GenBank between 1956 and 2021 (2024 RSV and 1602 RSV B) to show that the RSV fusion protein had lower genetic diversity than influenza haemagglutinin and SARS-CoV-2 spike proteins. INTERPRETATION: The nirsevimab binding site was highly conserved between 1956 and 2021. Nirsevimab escape variants were rare and have not increased over time. FUNDING: AstraZeneca and Sanofi.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Estudios Prospectivos , Proyectos Piloto , SARS-CoV-2 , Virus Sincitial Respiratorio Humano/genética , Glicoproteínas , Sitios de Unión
11.
Cell Rep Med ; 4(1): 100882, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36610390

RESUMEN

The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.


Asunto(s)
COVID-19 , Humanos , Formación de Anticuerpos , Infección Irruptiva , ChAdOx1 nCoV-19 , Inmunoglobulina A , Inmunoglobulina G , Mucosa Nasal , SARS-CoV-2 , Ensayos Clínicos Fase III como Asunto , Método Doble Ciego
12.
EBioMedicine ; 85: 104298, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36229342

RESUMEN

BACKGROUND: Intranasal vaccination may induce protective local and systemic immune responses against respiratory pathogens. A number of intranasal SARS-CoV-2 vaccine candidates have achieved protection in pre-clinical challenge models, including ChAdOx1 nCoV-19 (AZD1222, University of Oxford / AstraZeneca). METHODS: We performed a single-centre open-label Phase I clinical trial of intranasal vaccination with ChAdOx1 nCoV-19 in healthy adults, using the existing formulation produced for intramuscular administration. Thirty SARS-CoV-2 vaccine-naïve participants were allocated to receive 5 × 109 viral particles (VP, n=6), 2 × 1010 VP (n=12), or 5 × 1010 VP (n=12). Fourteen received second intranasal doses 28 days later. A further 12 received non-study intramuscular mRNA SARS-CoV-2 vaccination between study days 22 and 46. To investigate intranasal ChAdOx1 nCoV-19 as a booster, six participants who had previously received two intramuscular doses of ChAdOx1 nCoV-19 and six who had received two intramuscular doses of BNT162b2 (Pfizer / BioNTech) were given a single intranasal dose of 5 × 1010 VP of ChAdOx1 nCoV-19. Objectives were to assess safety (primary) and mucosal antibody responses (secondary). FINDINGS: Reactogenicity was mild or moderate. Antigen-specific mucosal antibody responses to intranasal vaccination were detectable in a minority of participants, rarely exceeding levels seen after SARS-CoV-2 infection. Systemic responses to intranasal vaccination were typically weaker than after intramuscular vaccination with ChAdOx1 nCoV-19. Antigen-specific mucosal antibody was detectable in participants who received an intramuscular mRNA vaccine after intranasal vaccination. Seven participants developed symptomatic SARS-CoV-2 infection. INTERPRETATION: This formulation of intranasal ChAdOx1 nCoV-19 showed an acceptable tolerability profile but induced neither a consistent mucosal antibody response nor a strong systemic response. FUNDING: AstraZeneca.


Asunto(s)
COVID-19 , Vacunas Virales , Adulto , Humanos , Adenoviridae/genética , Anticuerpos Antivirales , Vacuna BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , Vacunación/efectos adversos , Vacunas de ARNm
13.
Clin Transl Immunology ; 11(4): e1385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495877

RESUMEN

Objectives: Robust, quantitative serology assays are required to accurately measure antibody levels following vaccination and natural infection. We present validation of a quantitative, multiplex, SARS-CoV-2, electrochemiluminescent (ECL) serology assay; show correlation with two established SARS-CoV-2 immunoassays; and present calibration results for two SARS-CoV-2 reference standards. Methods: Precision, dilutional linearity, ruggedness, analytical sensitivity and specificity were evaluated. Clinical sensitivity and specificity were assessed using serum from prepandemic and SARS-CoV-2 polymerase chain reaction (PCR)-positive patient samples. Assay concordance to the established Roche Elecsys® Anti-SARS-CoV-2 immunoassay and a live-virus microneutralisation (MN) assay was evaluated. Results: Standard curves demonstrated the assay can quantify SARS-CoV-2 antibody levels over a broad range. Assay precision (10.2-15.1% variability), dilutional linearity (≤ 1.16-fold bias per 10-fold increase in dilution), ruggedness (0.89-1.18 overall fold difference), relative accuracy (107-118%) and robust selectivity (102-104%) were demonstrated. Analytical sensitivity was 7, 13 and 7 arbitrary units mL-1 for SARS-CoV-2 spike (S), receptor-binding domain (RBD) and nucleocapsid (N) antigens, respectively. For all antigens, analytical specificity was > 90% and clinical specificity was 99.0%. Clinical sensitivities for S, RBD and N antigens were 100%, 98.8% and 84.9%, respectively. Comparison with the Elecsys® immunoassay showed ≥ 87.7% agreement and linear correlation (Pearson r of 0.85, P < 0.0001) relative to the MN assay. Conversion factors for the WHO International Standard and Meso Scale Discovery® Reference Standard are presented. Conclusions: The multiplex SARS-CoV-2 ECL serology assay is suitable for efficient, reproducible measurement of antibodies to SARS-CoV-2 antigens in human sera, supporting its use in clinical trials and sero-epidemiology studies.

14.
Front Immunol ; 13: 1062067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713413

RESUMEN

Background: Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods: To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results: We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion: Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic.


Asunto(s)
COVID-19 , ChAdOx1 nCoV-19 , Humanos , Linfocitos T CD8-positivos , ChAdOx1 nCoV-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Inmunidad Humoral , Inmunidad Celular
15.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33087438

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children, resulting in annual epidemics worldwide. INFORM-RSV is a multiyear clinical study designed to describe the global molecular epidemiology of RSV in children under 5 years of age by monitoring temporal and geographical evolution of current circulating RSV strains, F protein antigenic sites, and their relationships with clinical features of RSV disease. During the pilot season (2017-2018), 410 RSV G-F gene sequences were obtained from 476 RSV-positive nasal samples collected from 8 countries (United Kingdom, Spain, The Netherlands, Finland, Japan, Brazil, South Africa, and Australia). RSV B (all BA9 genotype) predominated over RSV A (all ON1 genotype) globally (69.0% versus 31.0%) and in all countries except South Africa. Geographic clustering patterns highlighted wide transmission and continued evolution with viral spread. Most RSV strains were from infants of <1 year of age (81.2%), males (56.3%), and patients hospitalized for >24 h (70.5%), with no differences in subtype distribution. Compared to 2013 reference sequences, variations at F protein antigenic sites were observed for both RSV A and B strains, with high-frequency polymorphisms at antigenic site Ø (I206M/Q209R) and site V (L172Q/S173L/K191R) in RSV B strains. The INFORM-RSV 2017-2018 pilot season establishes an important molecular baseline of RSV strain distribution and sequence variability with which to track the emergence of new strains and provide an early warning system of neutralization escape variants that may impact transmission or the effectiveness of vaccines and MAbs under development.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Australia , Brasil , Niño , Preescolar , Finlandia , Genotipo , Humanos , Lactante , Japón , Masculino , Epidemiología Molecular , Países Bajos , Filogenia , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Sudáfrica , España , Reino Unido
16.
BMC Infect Dis ; 20(1): 450, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591017

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a global cause of severe respiratory morbidity and mortality in infants. While preventive and therapeutic interventions are being developed, including antivirals, vaccines and monoclonal antibodies, little is known about the global molecular epidemiology of RSV. INFORM is a prospective, multicenter, global clinical study performed by ReSViNET to investigate the worldwide molecular diversity of RSV isolates collected from children less than 5 years of age. METHODS: The INFORM study is performed in 17 countries spanning all inhabited continents and will provide insight into the molecular epidemiology of circulating RSV strains worldwide. Sequencing of > 4000 RSV-positive respiratory samples is planned to detect temporal and geographical molecular patterns on a molecular level over five consecutive years. Additionally, RSV will be cultured from a subset of samples to study the functional implications of specific mutations in the viral genome including viral fitness and susceptibility to different monoclonal antibodies. DISCUSSION: The sequencing and functional results will be used to investigate susceptibility and resistance to novel RSV preventive or therapeutic interventions. Finally, a repository of globally collected RSV strains and a database of RSV sequences will be created.


Asunto(s)
Genoma Viral , Epidemiología Molecular/métodos , Polimorfismo Genético , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Monoclonales/uso terapéutico , Antivirales/efectos adversos , Antivirales/uso terapéutico , Preescolar , Farmacorresistencia Bacteriana/genética , Femenino , Genotipo , Humanos , Inmunización Pasiva , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Influenza Other Respir Viruses ; 14(4): 403-411, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32126161

RESUMEN

BACKGROUND: RSV is a leading cause of lower respiratory tract infection in infants. Monitoring RSV glycoprotein sequences is critical for understanding RSV epidemiology and viral antigenicity in the effort to develop anti-RSV prophylactics and therapeutics. OBJECTIVES: The objective is to characterize the circulating RSV strains collected from infants in South Africa during 2015-2017. METHODS: A subset of 150 RSV-positive samples obtained in South Africa from HIV-unexposed and HIV-exposed-uninfected infants from 2015 to 2017, were selected for high-throughput next-generation sequencing of the RSV F and G glycoprotein genes. The RSV G and F sequences were analyzed by a bioinformatic pipeline and compared to the USA samples from the same three-year period. RESULTS: Both RSV A and RSV B co-circulated in South Africa during 2015-2017, with a shift from RSV A (58%-61% in 2015-2016) to RSV B (69%) in 2017. RSV A ON1 and RSV B BA9 genotypes emerged as the most prevalent genotypes in 2017. Variations at the F protein antigenic sites were observed for both RSV A and B strains, with dominant changes (L172Q/S173L) at antigenic site V observed in RSV B strains. RSV A and B F protein sequences from South Africa were very similar to the USA isolates except for a higher rate of RSV A NA1 and RSV B BA10 genotypes in South Africa. CONCLUSION: RSV G and F genes continue to evolve and exhibit both local and global circulation patterns in South Africa, supporting the need for continued national surveillance.


Asunto(s)
Infecciones por VIH/virología , Filogenia , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Antígenos Virales/genética , Femenino , Genotipo , Infecciones por VIH/epidemiología , Humanos , Lactante , Masculino , ARN Viral/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Análisis de Secuencia de ADN , Sudáfrica/epidemiología
18.
mSphere ; 4(2)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019002

RESUMEN

Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies.IMPORTANCE In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs.


Asunto(s)
Anticuerpos Antivirales/análisis , Inmunoensayo/métodos , Inmunoensayo/normas , Infecciones por Virus Sincitial Respiratorio/inmunología , Proteínas Virales/inmunología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Virus Sincitial Respiratorio Humano , Sensibilidad y Especificidad
19.
Bioorg Med Chem Lett ; 28(6): 1043-1049, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29486970

RESUMEN

A series of isoquinuclidine benzamides as glycine uptake inhibitors for the treatment of schizophrenia are described. Potency, lipophilicity, and intrinsic human microsomal clearance were parameters for optimization. Potency correlated with the nature of the ortho substituents of the benzamide ring, and reductions in lipophilicity could be achieved through heteroatom incorporation in the benzamide and pendant phenyl moieties. Improvements in human CLint were achieved through changes in ring size and the N-alkyl group of the isoquinuclidine itself, with des-alkyl derivatives (40-41, 44) demonstrating the most robust microsomal stability. Dimethylbenzamide 9 was tested in a mouse MK801 LMA assay and had a statistically significant attenuation of locomotor activity at 3 and 10 µmol/kg compared to control.


Asunto(s)
Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Administración Oral , Animales , Benzamidas/administración & dosificación , Benzamidas/química , Compuestos Bicíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos con Puentes/química , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intravenosas , Locomoción/efectos de los fármacos , Masculino , Ratones , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
20.
Invest New Drugs ; 30(2): 629-38, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20938713

RESUMEN

PURPOSE: Based on the promising activity and tolerability of flavopiridol administered with a pharmacokinetically-derived dosing schedule in chronic lymphocytic leukemia (CLL), we conducted a phase I study using this schedule in patients with advanced solid tumors. EXPERIMENTAL DESIGN: Flavopiridol was given IV as a 30-min loading dose followed by a 4-hr infusion weekly for 4 weeks repeated every 6 weeks. Dose-escalation was in cohorts of three patients using the standard 3+3 phase I study design. Blood samples were obtained for pharmacokinetic and pharmacodynamic studies. RESULTS: Thirty-four eligible patients with advanced solid tumors received a total of 208 doses (median 7, range 1-24). Total doses ranged from 40 to 105 mg/m(2). The primary dose limiting toxicity was cytokine release syndrome (CKRS). No antitumor responses were observed. The mean peak plasma concentration across all doses was 1.65 ± 0.86 µM. Area under the concentration-versus-time curve ([Formula: see text]) ranged from 4.31 to 32.2 µM[Symbol: see text]hr with an overall mean of 13.6 ± 7.0 µM[Symbol: see text]hr. Plasma flavopiridol concentrations and AUC increased proportionally with dose. There was no correlation between cytokine levels and clinical outcomes. CONCLUSIONS: The maximum-tolerated dose of flavopiridol is 20 mg/m(2) bolus followed by 20 mg/m(2) infusion over 4 h given weekly for 4 weeks on a 6-week cycle in patients with advanced solid tumors. Flavopiridol PK was notably different, and there was a higher frequency of CKRS, despite prophylactic steroids, seen in this patient group compared to previous studies with CLL using a similar dosing schedule.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Flavonoides/administración & dosificación , Flavonoides/farmacocinética , Neoplasias/tratamiento farmacológico , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Adulto , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/sangre , Área Bajo la Curva , Citocinas/sangre , Femenino , Flavonoides/efectos adversos , Flavonoides/sangre , Humanos , Infusiones Intravenosas , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/patología , Ohio , Piperidinas/efectos adversos , Piperidinas/sangre , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/sangre , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA