Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Physiol ; 594(13): 3589-607, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27028707

RESUMEN

KEY POINTS: Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. ABSTRACT: Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, ß-alanine and taurine by 9-, 6- and 3-fold respectively, and that of the competitive antagonist strychnine by 15-fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co-mutating N61, located on a neighbouring ß loop to N46, rescued the wild-type phenotype depending on the amino acid charge. Single-channel recording identified that burst length for the N46K mutant was reduced and fast agonist application revealed faster glycine deactivation times for the N46K mutant compared with the WT receptor. Overall, these data are consistent with N46 ensuring correct alignment of the α1 subunit interface by interaction with juxtaposed residues to preserve the structural integrity of the glycine binding site. This represents a new mechanism by which GlyR dysfunction induces startle disease.


Asunto(s)
Hiperekplexia/fisiopatología , Mutación Missense , Receptores de Glicina , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacología , Glicina/farmacología , Células HEK293 , Humanos , Modelos Moleculares , Picrotoxina/farmacología , Pregnenolona/farmacología , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/fisiología , Zinc/farmacología
2.
Methods Enzymol ; 521: 109-29, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23351736

RESUMEN

GABA(B) receptors are G-protein-coupled receptors (GPCRs) that are activated by GABA, the principal inhibitory neurotransmitter in the central nervous system. Cell surface mobility of GABA(B) receptors is a key determinant of the efficacy of slow and prolonged synaptic inhibition initiated by GABA. Therefore, experimentally monitoring receptor mobility and how this can be regulated is of primary importance for understanding the roles of GABA(B) receptors in the brain, and how they may be therapeutically exploited. Unusually for a GPCR, heterodimerization between the R1 and R2 subunits is required for the cell surface expression and signaling by prototypical GABA(B) receptors. Here, we describe a minimal epitope-tagging method, based on the incorporation of an α-bungarotoxin binding site (BBS) into the GABA(B) receptor, to study receptor internalization in live cells using a range of imaging approaches. We demonstrate how this technique can be adapted by modifying the BBS to monitor the simultaneous movement of both R1 and R2 subunits, revealing that GABA(B) receptors are internalized as heteromers.


Asunto(s)
Bungarotoxinas/metabolismo , Membrana Celular/metabolismo , Rastreo Celular/métodos , Colorantes Fluorescentes/análisis , Receptores de GABA-B/análisis , Receptores de GABA-B/metabolismo , Animales , Sitios de Unión , Bungarotoxinas/análisis , Membrana Celular/química , Clonación Molecular/métodos , Humanos , Modelos Moleculares , Imagen Molecular/métodos , Receptores de GABA-B/genética , Transfección/métodos
3.
Proc Natl Acad Sci U S A ; 109(30): 12171-6, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778417

RESUMEN

GABA(B) receptors mediate slow inhibitory neurotransmission in the brain and feature during excitatory synaptic plasticity, as well as various neurological conditions. These receptors are obligate heterodimers composed of GABA(B)R1 and R2 subunits. The two predominant R1 isoforms differ by the presence of two complement control protein modules or Sushi domains (SDs) in the N terminus of R1a. By using live imaging, with an α-bungarotoxin-binding site (BBS) and fluorophore-linked bungarotoxin, we studied how R2 stabilizes R1b subunits at the cell surface. Heterodimerization with R2 reduced the rate of internalization of R1b, compared with R1b homomers. However, R1aR2 heteromers exhibited increased cell surface stability compared with R1bR2 receptors in hippocampal neurons, suggesting that for receptors containing the R1a subunit, the SDs play an additional role in the surface stability of GABA(B) receptors. Both SDs were necessary to increase the stability of R1aR2 because single deletions caused the receptors to be internalized at the same rate and extent as R1bR2 receptors. Consistent with these findings, a chimera formed from the metabotropic glutamate receptor (mGluR)2 and the SDs from R1a increased the surface stability of mGluR2. These results suggest a role for SDs in stabilizing cell surface receptors that could impart different pre- and postsynaptic trafficking itineraries on GABA(B) receptors, thereby contributing to their physiological and pathological roles.


Asunto(s)
Hipocampo/metabolismo , Subunidades de Proteína/metabolismo , Receptores de GABA-B/metabolismo , Transmisión Sináptica/fisiología , Bungarotoxinas/metabolismo , Células HEK293 , Hipocampo/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Receptores de GABA-B/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
J Biol Chem ; 286(27): 24324-35, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21724853

RESUMEN

γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.


Asunto(s)
Neuronas/metabolismo , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Animales , Bungarotoxinas/farmacología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Receptores de GABA-B/genética , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 107(31): 13918-23, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643948

RESUMEN

Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substrate of AMP-dependent protein kinase (AMPK). NMDA-R activation leads to a rapid increase in phosphorylation of S783, followed by a slower dephosphorylation, which results from the activity of AMPK and protein phosphatase 2A, respectively. Agonist activation of GABABRs counters the effects of NMDA. Thus, NMDA-R activation alters the phosphorylation state of S783 and acts as a molecular switch to decrease the abundance of GABABRs at the neuronal plasma membrane. Such a mechanism may be of significance during synaptic plasticity or pathological conditions, such as ischemia or epilepsy, which lead to prolonged activation of glutamate receptors.


Asunto(s)
Endocitosis , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Células Cultivadas , Femenino , Humanos , Fosforilación , Ratas , Ratas Sprague-Dawley
6.
J Biol Chem ; 283(50): 34745-52, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18812318

RESUMEN

GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.


Asunto(s)
Bungarotoxinas/química , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Receptores de Superficie Celular/metabolismo , Receptores de GABA-B/metabolismo , Animales , Sitios de Unión , Bioquímica/métodos , Encéfalo/metabolismo , Humanos , Modelos Biológicos , Neuronas/metabolismo , Estructura Terciaria de Proteína , Ratas , Receptores Acoplados a Proteínas G/metabolismo
7.
Pharmacol Ther ; 116(1): 7-19, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17560657

RESUMEN

Controlling neuronal excitability is vitally important for maintaining a healthy central nervous system (CNS) and this relies on the activity of type A gamma-aminobutyric acid (GABA(A)) neurotransmitter receptors. Given this role, it is therefore important to understand how these receptors are regulated by endogenous modulators in the brain and determine where they bind to the receptor. One of the most potent groups of modulators is the neurosteroids which regulate the activity of synaptic and extrasynaptic GABA(A) receptors. This level of regulation is thought to be physiologically important and its dysfunction may be relevant to numerous neurological conditions. The aim of this review is to summarise those studies that over the last 20 years have focussed upon finding the binding sites for neurosteroids on GABA(A) receptors. We consider the nature of steroid binding sites in other proteins where this has been determined at atomic resolution and how their generic features were mapped onto GABA(A) receptors to help locate 2 putative steroid binding sites. Altogether, the findings strongly suggest that neurosteroids do bind to discrete sites on the GABA(A) receptor and that these are located within the transmembrane domains of alpha and beta receptor subunits. The implications for neurosteroid binding to other inhibitory receptors such as glycine and GABA(C) receptors are also considered. Identifying neurosteroid binding sites may enable the precise pathophysiological role(s) of neurosteroids in the CNS to be established for the first time, as well as providing opportunities for the design of novel drug entities.


Asunto(s)
Receptores de GABA-A/metabolismo , Esteroides/metabolismo , Animales , Sitios de Unión , Antagonistas de Receptores de GABA-A , Humanos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Receptores de GABA-A/química , Esteroides/química , Esteroides/farmacología , Transmisión Sináptica/efectos de los fármacos
8.
Neuron ; 53(2): 233-47, 2007 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-17224405

RESUMEN

GABA(B) receptors are heterodimeric G protein-coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly rectifying K(+) channels (GIRKs) and inhibiting Ca(2+) channels. We demonstrate here that GABA(B) receptors are intimately associated with 5'AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently activated by increases in 5'AMP concentration that are caused by enhanced metabolic activity, anoxia, or ischemia. AMPK binds the R1 subunit and directly phosphorylates S783 in the R2 subunit to enhance GABA(B) receptor activation of GIRKs. Phosphorylation of S783 is evident in many brain regions, and is increased dramatically after ischemic injury. Finally, we also reveal that S783 plays a critical role in enhancing neuronal survival after ischemia. Together our results provide evidence of a neuroprotective mechanism, which, under conditions of metabolic stress or after ischemia, increases GABA(B) receptor function to reduce excitotoxicity and thereby promotes neuronal survival.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores de GABA-B/metabolismo , Animales , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Supervivencia Celular , Células Cultivadas , Hipocampo/metabolismo , Humanos , Hipoxia/inducido químicamente , Hipoxia/metabolismo , Hipoxia/patología , Hipoxia/fisiopatología , Sueros Inmunes , Neuronas/metabolismo , Concentración Osmolar , Fosforilación , Canales de Potasio de Rectificación Interna/metabolismo , Isoformas de Proteínas/inmunología , Ratas , Receptores de GABA-B/química , Receptores de GABA-B/inmunología
9.
Nature ; 444(7118): 486-9, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17108970

RESUMEN

Inhibitory neurotransmission mediated by GABA(A) receptors can be modulated by the endogenous neurosteroids, allopregnanolone and tetrahydro-deoxycorticosterone. Neurosteroids are synthesized de novo in the brain during stress, pregnancyand after ethanol consumption, and disrupted steroid regulation of GABAergic transmission is strongly implicated in several debilitating conditions such as panic disorder, major depression, schizophrenia, alcohol dependence and catamenial epilepsy. Determining how neurosteroids interact with the GABA(A) receptor is a prerequisite for understanding their physiological and pathophysiological roles in the brain. Here we identify two discrete binding sites in the receptor's transmembrane domains that mediate the potentiating and direct activation effects of neurosteroids. They potentiate GABA responses from a cavity formed by the alpha-subunit transmembrane domains, whereas direct receptor activation is initiated by interfacial residues between alpha and beta subunits and is enhanced by steroid binding to the potentiation site. Thus, significant receptor activation by neurosteroids relies on occupancy of both the activation and potentiation sites. These sites are highly conserved throughout the GABA(A )receptor family, and their identification provides a unique opportunity for the development of new therapeutic, neurosteroid-based ligands and transgenic disease models of neurosteroid dysfunction.


Asunto(s)
Desoxicorticosterona/análogos & derivados , Pregnanolona/farmacología , Receptores de GABA-A/química , Secuencia de Aminoácidos , Sitios de Unión , Desoxicorticosterona/química , Desoxicorticosterona/farmacología , Conductividad Eléctrica , Humanos , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Pregnanolona/química , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo
10.
J Physiol ; 567(Pt 2): 365-77, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15946973

RESUMEN

Regulation of GABA(A) receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABA(A) receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both alphabeta and alphabeta gamma subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the beta subunit TM2-TM3 linker, was critically important for alkaline pH to modulate the function of both alpha1beta2 and alpha1beta2 gamma2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABA(A) receptors was also examined at acidic pH. At pH 6.4, GABA activation of alphabeta gamma receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the beta subunit. Decreasing the pH further to 5.4 inhibited GABA responses via alphabeta gamma receptors, whereas those responses recorded from alphabeta receptors were potentiated. Inserting homologous beta subunit residues into the gamma2 subunit to recreate, in alphabeta gamma receptors, the proton modulatory profile of alphabeta receptors, established that in the presence of beta2(H267), the mutation gamma2(T294K) was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the beta subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABA(A) receptor.


Asunto(s)
Riñón/metabolismo , Modelos Químicos , Modelos Moleculares , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo , Sitios de Unión , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Riñón/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Protones , Receptores de GABA-A/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/administración & dosificación
11.
J Neurosci ; 22(13): 5328-33, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097484

RESUMEN

GABA type A (GABA(A)) receptors are functionally regulated by external protons in a manner dependent on the receptor subunit composition. Although H(+) can regulate the open probability of single GABA ion channels, exactly what residues and receptor subunits are responsible for proton-induced modulation remain unknown. This study resolves this issue by using recombinant alpha1betai subunit GABA(A) receptors expressed in human embryonic kidney cells. The potentiating effect of low external pH on GABA responses exhibited p(Ka) in accord with the involvement of histidine and/or cysteine residues. The exposure of GABA(A) receptors to the histidine-modifying reagent DEPC ablated regulation by H(+), implicating the involvement of histidine residues rather than cysteines in proton regulation. Site-specific substitution of all conserved external histidines to alanine on the beta subunits revealed that H267 alone, in the TM2 domain, is important for H(+) regulation. These results are interpreted as a direct protonation of H267 on alpha1betai receptors rather than an involvement in signal transduction. The opposing functional effects induced by Zn(2+) and H(+) at this single histidine residue most likely reflect differences in charge delocalization on the imidazole rings in the mouth of the GABA(A) receptor ion channel. Additional substitutions of H267 in beta subunits with other residues possessing charged side chains (glutamate and lysine) reveal that this area of the ion channel can profoundly influence the functional properties of GABA(A) receptors.


Asunto(s)
Receptores de GABA-A/química , Receptores de GABA-A/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Conductividad Eléctrica , Histidina/genética , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Subunidades de Proteína , Protones , Receptores de GABA-A/genética , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA