RESUMEN
Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training. Bone collagen proteins were isolated and hydrolysed, and fractional synthetic rates (FSRs) were determined by the incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. There was a significant large main effect of phenotype at the femur site (p < 0.001; η2g = 0.473) with HRT rats showing greater bone collagen FSRs than LRT rats. There was a significant large main effect of phenotype (p = 0.008; η2g = 0.178) and a significant large main effect of sex (p = 0.005; η2g = 0.196) at the proximal site of the tibia with HRT rats showing greater bone collagen FSRs than LRT rats, and male rats showing greater bone collagen FSRs compared to female rats. There was a significant large main effect of training at the mid-shaft site of the tibia (p = 0.012; η2g = 0.159), with rats that underwent interval running training having greater bone collagen FSRs than control rats. Similarly, there was a significant large main effect of training at the distal site of the tibia (p = 0.050; η2g = 0.156), with rats in the interval running training group having greater bone collagen FSRs compared to rats in the control group. Collectively, this evidence highlights that bone responses to physiological effects are site-specific, indicating that interval running training has positive effects on bone collagen synthesis at the tibial mid-shaft and distal sites, whilst genetic factors affect bone collagen synthesis at the femur diaphysis (phenotype) and proximal tibia (phenotype and sex) in rats.
Asunto(s)
Huesos , Colágeno , Fenotipo , Condicionamiento Físico Animal , Carrera , Animales , Femenino , Masculino , Colágeno/metabolismo , Ratas , Carrera/fisiología , Huesos/metabolismo , Fémur/metabolismo , Resistencia Física/fisiología , Caracteres Sexuales , Tibia/metabolismoRESUMEN
Skeletal muscle tissue is in a constant state of turnover, with muscle tissue protein synthesis and breakdown rates ranging between 1% and 2% across the day in vivo in humans. Muscle tissue remodeling is largely controlled by the up- and down-regulation of muscle tissue protein synthesis rates. Research studies generally apply stable isotope-labeled amino acids to assess muscle protein synthesis rates in vivo in humans. Following labeled amino acid administration in a laboratory setting, muscle tissue samples are collected over several hours to assess the incorporation rate of these labeled amino acids in muscle tissue protein. To allow quantification of bulk muscle protein synthesis rates over more prolonged periods, the use of deuterated water methodology has regained much interest. Ingestion of daily boluses of deuterium oxide results in 2H enrichment of the body water pool. The available 2H-atoms become incorporated into endogenously synthesized alanine primarily through transamination of pyruvate in the liver. With 2H-alanine widely available to all tissues, it becomes incorporated into de novo synthesized tissue proteins. Assessing the increase in tissue protein-bound 2H-alanine enrichment in muscle biopsy samples over time allows for the calculation of muscle protein synthesis rates over several days or even weeks. As the deuterated water method allows for the assessment of muscle tissue protein synthesis rates under free-living conditions in nonlaboratory settings, there is an increasing interest in its application. This manuscript describes the theoretical background of the deuterated water method and offers a comprehensive tutorial to correctly apply the method to determine bulk muscle protein synthesis rates in vivo in humans.
RESUMEN
BACKGROUND: Skeletal muscle is a highly plastic tissue crucial for many functions associated with whole-body health across the life course. Magnetic resonance imaging (MRI) is the current gold standard for measuring skeletal muscle size. However, MRI is expensive, and access to facilities is often limited. B-mode ultrasonography (U/S) has been proposed as a potential alternative to MRI for the assessment of muscle size. However, to date, no work has explored the utility of U/S to assess disuse muscle atrophy (DMA) across muscles with different atrophy susceptibility profiles, an omission which may limit the clinical application of previous work. METHODS: To address this significant knowledge gap, 10 young men (22 ± years, 24.1 ± 2.3 kg/m2) underwent 15-day unilateral leg immobilization using a knee-brace and air boot. Cross-sectional area (CSA) and muscle thickness (MT) of the tibialis anterior (TA) and medial gastrocnemius (MG) were assessed via U/S before and after immobilization, with CSA and muscle volume assessed via MRI. RESULTS: With both muscles combined, there were good correlations between each U/S and MRI measure, both before (e.g., CSAMRI vs. MTU/S and CSAU/S: r = 0.88 and 0.94, respectively, both P < 0.0001) and after (e.g., VOLMRI vs. MTU/S and CSAU/S: r = 0.90 and 0.96, respectively, both P < 0.0001) immobilization. The relationship between the methods was notably stronger for MG than TA at each time-point (e.g., CSAMRI vs. MTU/S: MG, r = 0.70, P = 0.0006; TA, r = 0.37, P = 0.10). There was no relationship between the degree of DMA determined by the two methods in either muscle (e.g., TA pre- vs. post-immobilization, VOLMRI: 136 ± 6 vs. 133 ± 5, P = 0.08; CSAU/S: 6.05 ± 0.3 vs. 5.92 ± 0.4, P = 0.70; relationship between methods: r = 0.12, P = 0.75). CONCLUSIONS: Both MTU/S and CSAU/S provide comparable static measures of lower leg muscle size compared with MRI, albeit with weaker agreement in TA compared to MG. Although both MTU/S and CSAU/S can discern differences in DMA susceptibility between muscles, neither can reliably assess degree of DMA. Based on the growing recognition of heterogeneous atrophy profiles between muscles, and the topical importance of less commonly studied muscles (i.e., TA for falls prevention in older adults), future research should aim to optimize accessible methods to determine muscle losses across the body.
RESUMEN
Objectives: 'OMICs encapsulates study of scaled data acquisition, at the levels of DNA, RNA, protein, and metabolite species. The broad objectives of OMICs in biomedical exercise research are multifarious, but commonly relate to biomarker development and understanding features of exercise adaptation in health, ageing and metabolic diseases. Methods: This field is one of exponential technical (i.e., depth of feature coverage) and scientific (i.e., in health, metabolic conditions and ageing, multi-OMICs) progress adopting targeted and untargeted approaches. Results: Key findings in exercise biomedicine have led to the identification of OMIC features linking to heritability or adaptive responses to exercise e.g., the forging of GWAS/proteome/metabolome links to cardiovascular fitness and metabolic health adaptations. The recent addition of stable isotope tracing to proteomics ('dynamic proteomics') and metabolomics ('fluxomics') represents the next phase of state-of-the-art in 'OMICS. Conclusions: These methods overcome limitations associated with point-in-time 'OMICs and can be achieved using substrate-specific tracers or deuterium oxide (D2O), depending on the question; these methods could help identify how individual protein turnover and metabolite flux may explain exercise responses. We contend application of these methods will shed new light in translational exercise biomedicine.
RESUMEN
BACKGROUND: Bed-rest (BR) of only a few days duration reduces muscle protein synthesis and induces skeletal muscle atrophy and insulin resistance, but the scale and juxtaposition of these events have not been investigated concurrently in the same individuals. Moreover, the impact of short-term exercise-supplemented remobilization (ESR) on muscle volume, protein turnover and leg glucose uptake (LGU) in humans is unknown. METHODS: Ten healthy males (24 ± 1 years, body mass index 22.7 ± 0.6 kg/m2) underwent 3 days of BR, followed immediately by 3 days of ESR consisting of 5 × 30 maximal voluntary single-leg isokinetic knee extensions at 90°/s each day. An isoenergetic diet was maintained throughout the study (30% fat, 15% protein and 55% carbohydrate). Resting LGU was calculated from arterialized-venous versus venous difference across the leg and leg blood flow during the steady-state of a 3-h hyperinsulinaemic-euglycaemic clamp (60 mU/m2/min) measured before BR, after BR and after remobilization. Glycogen content was measured in vastus lateralis muscle biopsy samples obtained before and after each clamp. Leg muscle volume (LMV) was measured using magnetic resonance imaging before BR, after BR and after remobilization. Cumulative myofibrillar protein fractional synthetic rate (FSR) and whole-body muscle protein breakdown (MPB) were measured over the course of BR and remobilization using deuterium oxide and 3-methylhistidine stable isotope tracers that were administered orally. RESULTS: Compared with before BR, there was a 45% decline in insulin-stimulated LGU (P < 0.05) after BR, which was paralleled by a reduction in insulin-stimulated leg blood flow (P < 0.01) and removal of insulin-stimulated muscle glycogen storage. These events were accompanied by a 43% reduction in myofibrillar protein FSR (P < 0.05) and a 2.5% decrease in LMV (P < 0.01) during BR, along with a 30% decline in whole-body MPB after 2 days of BR (P < 0.05). Myofibrillar protein FSR and LMV were restored by 3 days of ESR (P < 0.01 and P < 0.01, respectively) but not by ambulation alone. However, insulin-stimulated LGU and muscle glycogen storage were not restored by ESR. CONCLUSIONS: Three days of BR caused concurrent reductions in LMV, myofibrillar protein FSR, myofibrillar protein breakdown and insulin-stimulated LGU, leg blood flow and muscle glycogen storage in healthy, young volunteers. Resistance ESR restored LMV and myofibrillar protein FSR, but LGU and muscle glycogen storage remained depressed, highlighting divergences in muscle fuel and protein metabolism. Furthermore, ambulation alone did not restore LMV and myofibrillar protein FSR in the non-exercised contralateral limb, emphasizing the importance of exercise rehabilitation following even short-term BR.
Asunto(s)
Glucosa , Músculo Esquelético , Masculino , Humanos , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucógeno/metabolismo , Proteínas Musculares/metabolismoRESUMEN
Cotadutide is a dual glucagon-like peptide 1 and glucagon receptor agonist under development for the treatment of non-alcoholic steatohepatitis and type 2 diabetes mellitus (T2DM) and chronic kidney disease. Non-alcoholic steatohepatitis is a complex disease with no approved pharmacotherapies, arising from an underlying state of systemic metabolic dysfunction in association with T2DM and obesity. Cotadutide has been shown to improve glycaemic control, body weight, lipids, liver fat, inflammation and fibrosis. We conducted a two-part, randomized phase 2a trial in men and women with overweight or obesity diagnosed with T2DM to evaluate the efficacy and safety of cotadutide compared with placebo and liraglutide. The primary endpoints were change from baseline to day 28 of treatment in postprandial hepatic glycogen (part A) and to day 35 of treatment in fasting hepatic glycogen (part B) with cotadutide versus placebo. Secondary endpoints in part B were changes in fasting hepatic glycogen with cotadutide versus the mono glucagon-like peptide 1 receptor agonist, liraglutide, and change in hepatic fat fraction. The trial met its primary endpoint. We showed that cotadutide promotes greater reductions in liver glycogen and fat compared with placebo and liraglutide. Safety and tolerability findings with cotadutide were comparable to those of previous reports. Thus, this work provides evidence of additional benefits of cotadutide that could be attributed to glucagon receptor engagement. Our results suggest that cotadutide acts on the glucagon receptor in the human liver to promote glycogenolysis and improve the metabolic health of the liver. ClinicalTrials.gov registration: NCT03555994 .
Asunto(s)
Diabetes Mellitus Tipo 2 , Glucogenólisis , Enfermedad del Hígado Graso no Alcohólico , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sobrepeso/complicaciones , Sobrepeso/tratamiento farmacológico , Liraglutida/efectos adversos , Receptores de Glucagón/uso terapéutico , Glucógeno Hepático , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Péptidos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/complicacionesRESUMEN
BACKGROUND: Surgery for urological cancers is associated with high complication rates and survivors commonly experience fatigue, reduced physical ability and quality of life. High-intensity interval training (HIIT) as surgical prehabilitation has been proven effective for improving the cardiorespiratory fitness (CRF) of urological cancer patients, however the mechanistic basis of this favourable adaptation is undefined. Thus, we aimed to assess the mechanisms of physiological responses to HIIT as surgical prehabilitation for urological cancer. METHODS: Nineteen male patients scheduled for major urological surgery were randomised to complete 4-weeks HIIT prehabilitation (71.6 ± 0.75 years, BMI: 27.7 ± 0.9 kg·m2) or a no-intervention control (71.8 ± 1.1 years, BMI: 26.9 ± 1.3 kg·m2). Before and after the intervention period, patients underwent m. vastus lateralis biopsies to quantify the impact of HIIT on mitochondrial oxidative phosphorylation (OXPHOS) capacity, cumulative myofibrillar muscle protein synthesis (MPS) and anabolic, catabolic and insulin-related signalling. RESULTS: OXPHOS capacity increased with HIIT, with increased expression of electron transport chain protein complexes (C)-II (p = 0.010) and III (p = 0.045); and a significant correlation between changes in C-I (r = 0.80, p = 0.003), C-IV (r = 0.75, p = 0.008) and C-V (r = 0.61, p = 0.046) and changes in CRF. Neither MPS (1.81 ± 0.12 to 2.04 ± 0.14%·day-1, p = 0.39) nor anabolic or catabolic proteins were upregulated by HIIT (p > 0.05). There was, however, an increase in phosphorylation of AS160Thr642 (p = 0.046) post-HIIT. CONCLUSIONS: A HIIT surgical prehabilitation regime, which improved the CRF of urological cancer patients, enhanced capacity for skeletal muscle OXPHOS; offering potential mechanistic explanation for this favourable adaptation. HIIT did not stimulate MPS, synonymous with the observed lack of hypertrophy. Larger trials pairing patient-centred and clinical endpoints with mechanistic investigations are required to determine the broader impacts of HIIT prehabilitation in this cohort, and to inform on future optimisation (i.e., to increase muscle mass).
RESUMEN
BACKGROUND: Age-related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti-sarcopenic therapy is currently unclear. METHODS: Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 µM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP-tagged myofibres or mitochondria at days 0, 4 and 6 post-adulthood. Mechanisms of ZA-mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life-course. RESULTS: We found 100 nM and 1 µM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 µM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 µM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 µM ZA were larval lethal. ZA (1 µM) significantly improved myofibrillar structure on days 4 and 6 post-adulthood (83 and 71% well-organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well-networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA-mediated healthspan extension included fdps-1/FDPS-1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, respectively, P < 0.0001), daf-16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt-2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb-1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir-2.3/SIRT-4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co-treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb-1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir-2.3/SIRT-4), both P > 0.05]. Conversely, let-756/FGF21 and sir-2.2/SIRT-4 were dispensable for ZA-induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, P < 0.01 (let-756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir-2.2/SIRT-4)]. CONCLUSIONS: Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti-sarcopenia therapy.
Asunto(s)
Proteínas de Caenorhabditis elegans , Sarcopenia , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Calidad de Vida , MúsculosRESUMEN
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (â¼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing â¼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Asunto(s)
Proteínas en la Dieta , Músculo Esquelético , Humanos , Leucina/metabolismo , Proteínas en la Dieta/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos Esenciales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Envejecimiento/metabolismo , Proteínas Musculares/metabolismoRESUMEN
BACKGROUND: Sarcopenia is the progressive loss of muscle mass and function with age. A number of different sarcopenia definitions have been proposed and utilised in research. This study aimed to investigate how the prevalence of sarcopenia in a research cohort of older adults is influenced by the use of independent aspects of these different definitions. METHODS: Data from 255 research participants were compiled. Defining criteria by the European Working Group on Sarcopenia in Older People, the International Working Group on Sarcopenia (IWGS), and the Foundation for the National Institutes of Health were applied. RESULTS: Prevalence of sarcopenia using muscle mass ranged from 4 to 22%. Gait speed and handgrip strength criteria identified 4-34% and 4-16% of participants as sarcopenic, respectively. CONCLUSION: Prevalence of sarcopenia differs substantially depending on the criteria used. Work is required to address the impact of this for sarcopenia research to be usefully translated to inform on clinical practice.
Asunto(s)
Sarcopenia , Humanos , Anciano , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Fuerza de la Mano/fisiología , Prevalencia , Velocidad al CaminarRESUMEN
PURPOSE: Resistance exercise training (RET) attenuates age-related muscle and strength loss ("sarcopenia"). However, compared with machine-based RET, the efficacy of cost-effective, accessible elastic band RET (EB-RET) for muscle adaptive remodeling lacks supporting mechanistic evidence. METHODS: Eight young (YM; 24 ± 4 yr) and eight older (OM; 68 ± 6 yr) untrained males consumed an oral stable isotope tracer (D 2 O) combined with serial vastus lateralis muscle biopsies to measure integrated myofibrillar protein synthesis (iMyoPS) and regulatory signaling over ~48 h before (habitual) and after an acute bout of EB-RET (6 × 12 repetitions at ~70% of one-repetition maximum). iMyoPS was determined via gas chromatography-pyrolysis-isotope ratio mass spectroscopy and regulatory signaling expression by immunoblot. RESULTS: Habitual iMyoPS did not differ between YM and OM (1.62% ± 0.21% vs 1.43% ± 0.47%·d -1 , respectively, P = 0.128). There was a significant increase in iMyoPS after EB-RET in YM (2.23% ± 0.69%·d -1 , P = 0.02), but not OM (1.75% ± 0.54%·d -1 , P = 0.30). EB-RET increased the phosphorylation of key anabolic signaling proteins similarly in YM and OM at 1 h postexercise, including p-IRS-1 Ser636/639 , p-Akt Ser473 , p-4EBP-1 Thr37/46 , p-P70S6K Thr389 , and p-RPS6 Ser240/244 , whereas p-TSC2 Thr1462 and p-mTOR Ser2448 increased only in YM (all P < 0.05). There were no differences in the expression of amino acid transporters/sensors or proteolytic markers after EB-RET. CONCLUSIONS: iMyoPS was elevated after EB-RET in YM but not OM. However, the increase in acute anabolic signaling with EB-RET was largely similar between groups. In conclusion, the capacity for EB-RET to stimulate iMyoPS may be impaired in older age. Further work may be necessary to optimize prescriptive programming in YM and OM.
Asunto(s)
Entrenamiento de Fuerza , Anciano , Humanos , Masculino , Músculo Esquelético/fisiología , Fosforilación/fisiología , Biosíntesis de Proteínas , Músculo Cuádriceps/metabolismo , Entrenamiento de Fuerza/métodos , Transducción de Señal/fisiología , Adulto Joven , Adulto , Persona de Mediana EdadRESUMEN
Studies in vitro have demonstrated a key molecular role for 1,25-dihydroxyvitamin D (1,25D) in skeletal muscle function, with vitamin D-deficiency (low serum 25-hydroxyvitamin D, 25D) being associated with muscle pain and weakness. Despite this, an understanding of the overall role of vitamin D in muscle health (particularly the impact of vitamin D-related genetic variants) has yet to be fully resolved, relative to more well-studied targets such as the skeleton. Thus, we aimed to review existing studies that have investigated relationships between skeletal muscle function and single nucleotide polymorphisms (SNPs) within vitamin D-related genes. A systematic review of papers published between January 2000 and June 2022 on PubMed, EMBASE and Web of Science pertaining to association between functionally relevant vitamin D receptor genetic variants and variants within genes of the vitamin D pathway and skeletal muscle function/outcomes was performed. 21 articles were included in the review for final analysis, of which 20 only studied genetic variation of the VDR gene. Of the included articles, 81 % solely included participants aged ≥ 50 years and of the 9 studies that did not only include White individuals, only 2 included Black participants. Within the vitamin D system, the VDR gene is the primary gene of which associations between polymorphisms and muscle function have been investigated. VDR polymorphisms have been significantly associated with muscle phenotypes in two or more studies. Of note A1012G was significantly associated with higher handgrip strength, but the results for other SNPs were notably variable between studies. While the lack of definitive evidence and study heterogeneity makes it difficult to draw conclusions, the findings of this review highlight a need for improvements with regards to the use of more diverse study populations, i.e., inclusion of Black individuals and other people of colour, and expanding research scope beyond the VDR gene.
Asunto(s)
Fuerza de la Mano , Receptores de Calcitriol , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Músculo Esquelético/metabolismo , Vitaminas/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
Exercise training can induce adaptive changes to tendon tissue both structurally and mechanically; however, the underlying compositional changes that contribute to these alterations remain uncertain in humans, particularly in the context of the ageing tendon. The aims of the present study were to determine the molecular changes with ageing in patellar tendons in humans, as well as the responses to exercise and exercise type (eccentric (ECC) and concentric (CON)) in young and old patellar tendon. Healthy younger males (age 23.5 ± 6.1 years; n = 27) and older males (age 68.5 ± 1.9 years; n = 27) undertook 8 weeks of CON or ECC training (3 times per week; at 60% of 1 repetition maximum (1RM)) or no training. Subjects consumed D2O throughout the protocol and tendon biopsies were collected after 4 and 8 weeks for measurement of fractional synthetic rates (FSR) of tendon protein synthesis and gene expression. There were increases in tendon protein synthesis following 4 weeks of CON and ECC training (P < 0.01; main effect by ANOVA), with no differences observed between young and old males, or training type. At the transcriptional level however, ECC in young adults generally induced greater responses of collagen and extracellular matrix-related genes than CON, while older individuals had reduced gene expression responses to training. Different training types did not appear to induce differential tendon responses in terms of protein synthesis, and while tendons from older adults exhibited different transcriptional responses to younger individuals, protein turnover changes with training were similar for both age groups.
Asunto(s)
Ligamento Rotuliano , Masculino , Humanos , Anciano , Adolescente , Ligamento Rotuliano/fisiología , Ejercicio Físico/fisiología , EnvejecimientoRESUMEN
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Anciano , Músculo Esquelético/metabolismo , Hipertrofia , Envejecimiento , ADN/metabolismoRESUMEN
Resistance exercise training (RET) can counteract negative features of muscle ageing but older age associates with reduced adaptive capacity to RET. Altered muscle protein networks likely contribute to ageing RET adaptation; therefore, associated proteome-wide responses warrant exploration. We employed quantitative sarcoplasmic proteomics to compare age-related proteome and phosphoproteome responses to RET. Thigh muscle biopsies were collected from eight young (25 ± 1.1 years) and eight older (67.5 ± 2.6 years) adults before and after 20 weeks supervised RET. Muscle sarcoplasmic fractions were pooled for each condition and analysed using Isobaric Tags for Relative and Absolute Quantification (iTRAQ) labelling, tandem mass spectrometry and network-based hub protein identification. Older adults displayed impaired RET-induced adaptations in whole-body lean mass, body fat percentage and thigh lean mass (P > 0.05). iTRAQ identified 73 differentially expressed proteins with age and/or RET. Despite possible proteomic stochasticity, RET improved ageing profiles for mitochondrial function and glucose metabolism (top hub; PYK (pyruvate kinase)) but failed to correct altered ageing expression of cytoskeletal proteins (top hub; YWHAZ (14-3-3 protein zeta/delta)). These ageing RET proteomic profiles were generally unchanged or oppositely regulated post-RET in younger muscle. Similarly, RET corrected expression of 10 phosphoproteins altered in ageing, but these responses were again different vs. younger adults. Older muscle is characterised by RET-induced metabolic protein profiles that, whilst not present in younger muscle, improve untrained age-related proteomic deficits. Combined with impaired cytoskeletal adhesion responses, these results provide a proteomic framework for understanding and optimising ageing muscle RET adaptation.
Asunto(s)
Entrenamiento de Fuerza , Humanos , Anciano , Entrenamiento de Fuerza/métodos , Proteoma/metabolismo , Proteómica , Músculo Esquelético/metabolismo , Envejecimiento/fisiologíaRESUMEN
[This corrects the article DOI: 10.1016/j.nutos.2021.02.005.].
RESUMEN
Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11% to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8% to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. KEY POINTS: Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans.
Asunto(s)
Fuerza Muscular , Músculo Esquelético , Humanos , Masculino , Electromiografía , Músculo Esquelético/fisiología , Extremidad Inferior , Músculo Cuádriceps/fisiología , Contracción Muscular/fisiologíaRESUMEN
BACKGROUND: We determined the short-term (i.e. 4 days) impacts of disuse atrophy in relation to muscle protein turnover [acute fasted-fed muscle protein synthesis (MPS)/muscle protein breakdown (MPB) and integrated MPS/estimated MPB]. METHODS: Healthy men (N = 9, 22 ± 2 years, body mass index 24 ± 3 kg m-2 ) underwent 4 day unilateral leg immobilization. Vastus lateralis (VL) muscle thickness (MT) and extensor strength and thigh lean mass (TLM) were measured. Bilateral VL muscle biopsies were collected on Day 4 at t = -120, 0, 90, and 180 min to determine integrated MPS, estimated MPB, acute fasted-fed MPS (l-[ring-13 C6 ]-phe), and acute fasted tracer decay rate representative of MPB (l-[15 N]-phe and l-[2 H8 ]-phe). Protein turnover cell signalling was measured by immunoblotting. RESULTS: Immobilization decreased TLM [pre: 7477 ± 1196 g, post: 7352 ± 1209 g (P < 0.01)], MT [pre: 2.67 ± 0.50 cm, post: 2.55 ± 0.51 cm (P < 0.05)], and strength [pre: 260 ± 43 N m, post: 229 ± 37 N m (P < 0.05)] with no change in control legs. Integrated MPS decreased in immob vs. control legs [control: 1.55 ± 0.21% day-1 , immob: 1.29 ± 0.17% day-1 (P < 0.01)], while tracer decay rate (i.e. MPB) (control: 0.02 ± 0.006, immob: 0.015 ± 0.015) and fractional breakdown rate (FBR) remained unchanged [control: 1.44 ± 0.51% day-1 , immob: 1.73 ± 0.35% day-1 (P = 0.21)]. Changes in MT correlated with those in MPS but not FBR. MPS increased in the control leg following feeding [fasted: 0.043 ± 0.012% h-1 , fed: 0.065 ± 0.017% h-1 (P < 0.05)] but not in immob [fasted: 0.034 ± 0.014% h-1 , fed: 0.049 ± 0.023% h-1 (P = 0.09)]. There were no changes in markers of MPB with immob (P > 0.05). CONCLUSIONS: Human skeletal muscle disuse atrophy is driven by declines in MPS, not increases in MPB. Pro-anabolic therapies to mitigate disuse atrophy would likely be more effective than therapies aimed at attenuating protein degradation.
Asunto(s)
Proteínas Musculares , Trastornos Musculares Atróficos , Biosíntesis de Proteínas , Humanos , Pierna , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Adulto JovenRESUMEN
Validated diagnostics of skeletal muscle vitality could benefit clinical and basic science in terms of mechanistic insights and in determining the efficacy of interventions, e.g. exercise/pharmaceuticals/nutrients. We recently developed a Combined Oral Assessment of Muscle (COSIAM) that can be used to simultaneously quantify whole-body muscle mass (WBMM), muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Here, we aimed to establish, in a cross-sectional fashion, links between COSIAM parameters and established aspects of muscle function. We recruited 37 healthy older adults (male (M):female (F) (21/16); 72 ± 5 y)) into a 3-day trial. Subjects consumed D3-creatine (D3-Cr dilution to assess WBMM), D2O (MPS by incorporation of alanine) and D3-3-methylhistidine (D3-MH dilution to assess MPB). A biopsy at day 3 was used to determine MPS, and blood/urine samples were collected to determine D3-Cr/D3-MH dilution for WBMM and MPB. Physiological measures of muscle mass (e.g. DXA/ultrasound) and function (e.g. handgrip strength, maximum voluntary contraction (MVC), one-repetition maximum (1-RM)) were ascertained. A stepwise linear regression approach was used to address links between facets of COSIAM (MPS, MPB, WBMM) and muscle physiology. Despite expected differences in muscle mass, there were no significant differences in MPS or MPB between sexes. WBMM as measured using D3-Cr positively correlated with DXA-derived lean body mass (LBM) and appendicular LBM (ABLM). Stepwise linear regression was used to assess which combination of MPS, MPB, D3-Cr and absolute synthesis rate (ASR) best predicted physiological measures of muscle health in these older adults. D3-Cr WBMM alone was the best predictor of handgrip, 1RM and MVC, and outperformed more traditional measures of muscle mass by DXA. The COSIAM approach substantiates D3-Cr as a robust biomarker of multiple muscle physiology health biomarkers. Future work using COSIAM should focus upon how and which parameters it can inform upon in relation to disease progression and the efficacy of interventions.