Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biotechnol Adv ; 68: 108234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37558188

RESUMEN

Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.


Asunto(s)
Vacunas , Antígenos , Inmunidad Celular , Inmunidad Innata , Polisacáridos , Adyuvantes Inmunológicos
2.
Front Mol Biosci ; 10: 1085887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936989

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the primary etiologic agent of traveler's diarrhea and a major cause of diarrheal disease and death worldwide, especially in infants and young children. Despite significant efforts over the past several decades, an affordable vaccine that appreciably decreases mortality and morbidity associated with ETEC infection among children under the age of 5 years remains an unmet aspirational goal. Here, we describe robust, cost-effective biosynthetic routes that leverage glycoengineered strains of non-pathogenic E. coli or their cell-free extracts for producing conjugate vaccine candidates against two of the most prevalent O serogroups of ETEC, O148 and O78. Specifically, we demonstrate site-specific installation of O-antigen polysaccharides (O-PS) corresponding to these serogroups onto licensed carrier proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. The resulting conjugates stimulate strong O-PS-specific humoral responses in mice and elicit IgG antibodies that possess bactericidal activity against the cognate pathogens. We also show that one of the prototype conjugates decorated with serogroup O148 O-PS reduces ETEC colonization in mice, providing evidence of vaccine-induced mucosal protection. We anticipate that our bacterial cell-based and cell-free platforms will enable creation of multivalent formulations with the potential for broad ETEC serogroup protection and increased access through low-cost biomanufacturing.

3.
ACS Synth Biol ; 12(1): 95-107, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36548479

RESUMEN

Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.


Asunto(s)
Escherichia coli , Ratones , Animales , Vacunas Conjugadas/metabolismo , Escherichia coli/metabolismo , Composición de Medicamentos
4.
J Chromatogr A ; 1663: 462744, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34971861

RESUMEN

Recombinant adeno-associated virus (AAV) has been broadly used as a delivery tool for gene therapy applications. The development of a robust purification process is essential for delivering high purity and quality AAV products to clinic. The short clinical timelines and material limitations of early-stage development pose unique challenges to developing robust and scalable downstream purification processes. One approach to overcome these limitations is to leverage high throughput (HTP) strategies and automation technologies for purification process development, an approach that is well established in protein biologics and other areas. However, due to the unique challenges related to viral vector purification, implementing HTP approaches for gene therapy process development has not been explored extensively. In this paper, we established a HTP chromatography platform and demonstrated its capability to facilitate gene therapy purification process development using both mini-columns and self-packed resin plates. The end-to-end development workflow for AAV HTP purification is detailed in this work with the expectation of serving as an introductory for the AAV purification development field. Comparable process performance was confirmed between a bench-scale chromatography process and an HTP chromatography format. Slightly lower recovery was observed using the HTP format (62% vs 75%), as well as %full capsid enrichment (71% vs. 82%). Comparable impurity clearance capability was demonstrated between the two different systems as well. It was concluded that the established HTP chromatography formats can serve as a surrogate to bench-scale chromatography development to reduce material needs and development timelines for AAV purification development.


Asunto(s)
Dependovirus , Vectores Genéticos , Cápside , Proteínas de la Cápside , Cromatografía , Dependovirus/genética
5.
Nat Commun ; 12(1): 1389, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654100

RESUMEN

Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production-chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of ~27 µg/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules.


Asunto(s)
Vías Biosintéticas , Sulfatos de Condroitina/biosíntesis , Escherichia coli/metabolismo , Transporte Biológico , Escherichia coli/enzimología , Fermentación , Oxidorreductasas/metabolismo , Sulfotransferasas/metabolismo
6.
Sci Rep ; 10(1): 12939, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737387

RESUMEN

Cell therapy for the injured spinal cord will rely on combined advances in human stem cell technologies and delivery strategies. Here we encapsulate homotypic spinal cord neural stem cells (scNSCs) in an alginate-based neural ribbon delivery platform. We perform a comprehensive in vitro analysis and qualitatively demonstrate graft survival and injury site retention using a rat C4 hemi-contusion model. Pre-configured neural ribbons are transport-stable modules that enable site-ready injection, and can support scNSC survival and retention in vivo. Neural ribbons offer multifunctionality in vitro including co-encapsulation of the injury site extracellular matrix modifier chondroitinase ABC (chABC), tested here in glial scar models, and ability of cervically-patterned scNSCs to differentiate within neural ribbons and project axons for integration with 3-D external matrices. This is the first extensive in vitro characterization of neural ribbon technology, and constitutes a plausible method for reproducible delivery, placement, and retention of viable neural cells in vivo.


Asunto(s)
Recuperación de la Función , Traumatismos de la Médula Espinal , Médula Espinal , Trasplante de Células Madre , Animales , Condroitina ABC Liasa/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Células-Madre Neurales/trasplante , Ratas Long-Evans , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre/instrumentación , Trasplante de Células Madre/métodos
7.
Sci Rep ; 10(1): 7697, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376914

RESUMEN

The alpha-2,8-linked form of the polysaccharide polysialic acid (PSA) has widespread implications in physiological and pathological processes, ranging from neurological development to disease progression. Though the high electronegativity and excluded volume of PSA often promotes interference of biomolecular interactions, PSA-binding ligands have important implications for both biological processes and biotechnological applications. As such, the design, identification, and characterisation of novel ligands towards PSA is critical for expanding knowledge of PSA interactions and achieving selective glycan targeting. Here, we report on a rational approach for the identification of alpha-2,8-PSA-binding peptides, involving design from the endogenous ligand Siglec-11 and multi-platform characterisation of peptide binding. Microarray-based examination of peptides revealed charge and sequence characteristics influencing peptide affinity to PSA, and carbohydrate-peptide binding was further quantified with a novel fluorescence anisotropy assay. PSA-binding peptides exhibited specific binding to polymeric SA, as well as different degrees of selective binding in various conditions, including competition with PSA of alternating 2,8/9-linkages and screening with PSA-expressing cells. A computational study of Siglec-11 and Siglec-11-derived peptides offered synergistic insight into ligand binding. These results demonstrate the potential of PSA-binding peptides for selective targeting and highlight the importance of the approaches described herein for the study of carbohydrate interactions.


Asunto(s)
Ligandos , Péptidos/química , Unión Proteica , Ácidos Siálicos/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Biblioteca de Péptidos
8.
Microb Cell Fact ; 18(1): 132, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405374

RESUMEN

BACKGROUND: Heparosan is the unsulfated precursor of heparin and heparan sulfate and its synthesis is typically the first step in the production of bioengineered heparin. In addition to its utility as the starting material for this important anticoagulant and anti-inflammatory drug, heparosan is a versatile compound that possesses suitable chemical and physical properties for making a variety of high-quality tissue engineering biomaterials, gels and scaffolds, as well as serving as a drug delivery vehicle. The selected production host was the Gram-positive bacterium Bacillus megaterium, which represents an increasingly used choice for high-yield production of intra- and extracellular biomolecules for scientific and industrial applications. RESULTS: We have engineered the metabolism of B. megaterium to produce heparosan, using a T7 RNA polymerase (T7 RNAP) expression system. This system, which allows tightly regulated and efficient induction of genes of interest, has been co-opted for control of Pasteurella multocida heparosan synthase (PmHS2). Specifically, we show that B. megaterium MS941 cells co-transformed with pT7-RNAP and pPT7_PmHS2 plasmids are capable of producing heparosan upon induction with xylose, providing an alternate, safe source of heparosan. Productivities of ~ 250 mg/L of heparosan in shake flasks and ~ 2.74 g/L in fed-batch cultivation were reached. The polydisperse Pasteurella heparosan synthase products from B. megaterium primarily consisted of a relatively high molecular weight (MW) heparosan (~ 200-300 kD) that may be appropriate for producing certain biomaterials; while the less abundant lower MW heparosan fractions (~ 10-40 kD) can be a suitable starting material for heparin synthesis. CONCLUSION: We have successfully engineered an asporogenic and non-pathogenic B. megaterium host strain to produce heparosan for various applications, through a combination of genetic manipulation and growth optimization strategies. The heparosan products from B. megaterium display a different range of MW products than traditional E. coli K5 products, diversifying its potential applications and facilitating increased product utility.


Asunto(s)
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Disacáridos/biosíntesis , Glicosiltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , ARN Polimerasas Dirigidas por ADN/genética , Ingeniería Genética , Glicosiltransferasas/genética , Ingeniería Metabólica , Pasteurella multocida/enzimología , Proteínas Virales/genética
9.
Biotechnol J ; 14(9): e1800436, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31180182

RESUMEN

Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one-step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least-explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000-fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin-4-sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4-fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS-accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one-step microbial synthesis of CS. This will provide a new platform to produce CS.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Fosfoadenosina Fosfosulfato/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
10.
Glycobiology ; 29(8): 572-581, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31143933

RESUMEN

The specificity and action pattern of a ß-glucuronidase derived from the pathogenic bacteria Burkholderia pseudomallei and expressed in Escherichia coli as a recombinant protein has been evaluated. While this enzyme shows activity on a number of glycosaminoglycans, our study has focused on its action on heparin, heparan sulfate and their biosynthetic intermediates as well as chemoenzymatically synthesized, structurally defined heparan sulfate oligosaccharides. These heparin/heparan sulfate (HP/HS) substrates examined varied in size and structure, but all contained an uronic acid (UA) residue ß-(1→4) linked to a glucosamine residue. On the substrates tested, this enzyme (heparanase Bp) acted only on a glucuronic acid residue ß-(1→4) linked to an N-acetylglucosamine, N-sulfoglucosamine or N-acetyl-6-O-sulfoglucosamine residue. A substrate was required to have a length of pentasaccharide or longer and heparanase Bp acted with a random endolytic action pattern on HP/HS. The specificity and glycohydrolase mechanism of action of heparanase Bp resembles mammalian heparanase and is complementary to the bacterial heparin lyases, which act through an eliminase mechanism on a glucosamine residue (1→4) linked to a UA residue, suggesting its utility as a tool for the structural determination of HP/HS as well as representing a possible model for the medically relevant mammalian heparanase. The utility heparanase Bp was demonstrated by the oligosaccharide mapping of heparin, which afforded resistant intact highly sulfated domains ranging from tetrasaccharide to >28-mer with a molecular weight >9000.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/enzimología , Glucuronidasa/metabolismo , Heparina/análogos & derivados , Heparina/metabolismo , Heparitina Sulfato/análogos & derivados , Heparitina Sulfato/química , Especificidad por Sustrato
11.
Glycoconj J ; 36(2): 165-174, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30963354

RESUMEN

Retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are major causes of blindness worldwide. Humans cannot regenerate retina, however, axolotl (Ambystoma mexicanum), a laboratory-bred salamander, can regenerate retinal tissue throughout adulthood. Classic signaling pathways, including fibroblast growth factor (FGF), are involved in axolotl regeneration. Glycosaminoglycan (GAG) interaction with FGF is required for signal transduction in this pathway. GAGs are anionic polysaccharides in extracellular matrix (ECM) that have been implicated in limb and lens regeneration of amphibians, however, GAGs have not been investigated in the context of retinal regeneration. GAG composition is characterized native and decellularized axolotl and porcine retina using liquid chromatography mass spectrometry. Pig was used as a mammalian vertebrate model without the ability to regenerate retina. Chondroitin sulfate (CS) was the main retinal GAG, followed by heparan sulfate (HS), hyaluronic acid, and keratan sulfate in both native and decellularized axolotl and porcine retina. Axolotl retina exhibited a distinctive GAG composition pattern in comparison with porcine retina, including a higher content of hyaluronic acid. In CS, higher levels of 4- and 6- O-sulfation were observed in axolotl retina. The HS composition was greater in decellularized tissues in both axolotl and porcine retina by 7.1% and 15.4%, respectively, and different sulfation patterns were detected in axolotl. Our findings suggest a distinctive GAG composition profile of the axolotl retina set foundation for role of GAGs in homeostatic and regenerative conditions of the axolotl retina and may further our understanding of retinal regenerative models.


Asunto(s)
Sulfatos de Condroitina/análisis , Heparitina Sulfato/análisis , Ácido Hialurónico/análisis , Sulfato de Queratano/análisis , Retina/química , Ambystoma mexicanum , Animales , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Ácido Hialurónico/metabolismo , Sulfato de Queratano/metabolismo , Retina/metabolismo , Porcinos
12.
Angew Chem Int Ed Engl ; 58(18): 5962-5966, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30870573

RESUMEN

Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de-N-acetylation, chemical N-sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non-radioactive NMR assay for glucuronosyl-C5-epimerase, and background-free quantification of in vivo half-life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope-enriched glycosaminoglycans.


Asunto(s)
Anticoagulantes/uso terapéutico , Heparina , Animales , Anticoagulantes/farmacología , Humanos , Conejos
13.
Curr Opin Biotechnol ; 53: 85-92, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29291494

RESUMEN

Animal-extraction, despite its limitations, continues to monopolize the fast-growing glycosaminoglycan (GAG) industry. The past few years have seen an increased interest in the development of alternative GAG production methods. Chemical and chemo-enzymatic synthesis and biosynthesis from GAG producing cells, including engineered recombinant strains, are currently under investigation. Despite achieving considerable successes, these alternate approaches cannot yet meet worldwide demands for these important polysaccharides. Bottlenecks associated with achieving high-titers need to be addressed using newly developed tools. Several parameters including chassis choice, analytics, intracellular precursor synthesis, enzyme engineering and use of synthetic biology tools need to be optimized. We envision that new engineering approaches together with advances in the basic biology and chemistry of GAGs will move GAG production beyond its currently limited supply chain.


Asunto(s)
Biotecnología/métodos , Glicosaminoglicanos/biosíntesis , Animales , Glicosaminoglicanos/química , Ingeniería Metabólica , Polisacáridos , Ingeniería de Proteínas , Biología Sintética
14.
Emerg Top Life Sci ; 2(3): 337-348, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33525789

RESUMEN

With rising concerns about sustainable practices, environmental complications, and declining resources, metabolic engineers are transforming microorganisms into cellular factories for producing capsular polysaccharides (CPSs). This review provides an overview of strategies employed for the metabolic engineering of heparosan, chondroitin, hyaluronan, and polysialic acid - four CPSs that are of interest for manufacturing a variety of biomedical applications. Methods described include the exploitation of wild-type and engineered native CPS producers, as well as genetically engineered heterologous hosts developed through the improvement of naturally existing pathways or newly (de novo) designed ones. The implementation of methodologies like gene knockout, promoter engineering, and gene expression level control has resulted in multiple-fold improvements in CPS fermentation titers compared with wild-type strains, and substantial increases in productivity, reaching as high as 100% in some cases. Optimization of these biotechnological processes can permit the adoption of industrially competitive engineered microorganisms to replace traditional sources that are generally toxic, unreliable, and inconsistent in product quality.

15.
Biotechnol J ; 12(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28799715

RESUMEN

Chondroitin sulfates are the glycosaminoglycan chains of proteoglycans critical in the normal development and pathophysiology of all animals. Chondroitinase ACII, a polysaccharide lyase originally isolated from Arthrobacter aurescens IAM 110 65, which is widely used in the analysis and study of chondroitin structure, is no longer commercially available. The aim of the current study is to prepare recombinant versions of this critical enzyme for the glycobiology research community. Two versions of recombinant chondroitinase ACII are prepared in Escherichia coli, and their activity, stability, specificity, and action pattern are examined, along with a non-recombinant version secreted by an Arthrobacter strain. The recombinant enzymes are similar to the enzyme obtained from Arthrobacter for all examined properties, except for some subtle specificity differences toward uncommon chondroitin sulfate substrates. These differences are believed to be due to either post-translational modification of the Arthrobacter-secreted enzyme or other subtle structural differences between the recombinant and natural enzymes. The secreted chondroitinase can serve as a suitable replacement for the original enzyme that is currently unavailable, while the recombinant ones can be applied generally in the structural determination of most standard chondroitin sulfates.


Asunto(s)
Arthrobacter/enzimología , Arthrobacter/genética , Condroitín Liasas/biosíntesis , Condroitín Liasas/genética , Vectores Genéticos , Condroitín/química , Condroitín Liasas/aislamiento & purificación , Condroitín Liasas/metabolismo , Sulfatos de Condroitina/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Especificidad por Sustrato , Temperatura
16.
Bioeng Transl Med ; 2(1): 17-30, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28516163

RESUMEN

Heparin is an anionic polysaccharide that is widely used as a clinical anticoagulant. This glycosaminoglycan is prepared from animal tissues in metric ton quantities. Animal-sourced heparin is also widely used in the preparation of low molecular weight heparins that are gaining in popularity as a result of their improved pharmacological properties. The recent contamination of pharmaceutical heparin together with concerns about increasing demand for this life saving drug and the fragility of the heparin supply chain has led the scientific community to consider other potential sources for heparin. This review examines progress toward the preparation of engineered heparins through chemical synthesis, chemoenzymatic synthesis, and metabolic engineering.

17.
Chembiochem ; 16(16): 2392-402, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26391210

RESUMEN

A universal method that improves protein stability and evolution has thus far eluded discovery. Recently, however, studies have shown that insertional fusion to a protein chaperone stabilized various target proteins with minimal negative effects. The improved stability was derived from insertion into a hyperthermophilic protein, Pyrococcus furiosus maltodextrin-binding protein (PfMBP), rather than from changes to the target protein sequence. In this report, by evaluating the thermodynamic and kinetic stability of various inserted ß-lactamase (BLA) homologues, we were able to examine the molecular determinants of stability realized by insertional fusion to PfMBP. Results indicated that enhanced stability and suppressed aggregation of BLA stemmed from enthalpic and entropic mechanisms. This report also suggests that insertional fusion to a stable protein scaffold has the potential to be a useful method for improving protein stability, as well as functional protein evolution.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus furiosus/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Dicroismo Circular , Entropía , Cinética , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
18.
Environ Monit Assess ; 185(12): 10495-509, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23955496

RESUMEN

The Nassau River estuary is located in northeast Florida adjacent to the eutrophic St. Johns River. Historically, development has been sparse in the Nassau River's catchment; thus, the system may provide a relatively undisturbed aquatic environment. To monitor the condition of the Nassau River estuary and to discern spatial and temporal trends in water quality, nutrients and hydrographic variables were assessed throughout the estuary from 1997 to 2011. Hydrographic (temperature, salinity, total suspended solids, and turbidity) and nutrient parameters (total phosphorus, ortho-PO4(3-), total nitrogen, NH4(+), total Kjeldahl nitrogen, and NO3(-)) were monitored bimonthly at 12 sites in the mesohaline and polyhaline zones of the river. Nonparametric Kendall's Tau was implemented to analyze long-term water quality patterns. Salinity was found to increase with time, particularly in the mesohaline sampling sites. Dissolved oxygen decreased over time in the estuary and hypoxic conditions became increasingly frequent in the final years of the study. Nutrients increased in the estuary, ranging from 149 to 401%. Rainfall data collected in adjacent conservation areas did not correlate well with nutrients as compared with stream discharge data collected in the basin headwaters, outside of the conservation lands, attributed here to expanding urbanization. During the study period, the Nassau basin underwent rapid human population growth and land development resulting in commensurate impacts to water quality. Nutrient and physical data collected during this study indicate that the Nassau River estuary is becoming more eutrophic with time.


Asunto(s)
Monitoreo del Ambiente , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Estuarios , Eutrofización , Florida , Nitrógeno/análisis , Fósforo/análisis , Salinidad , Estados Unidos , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA