RESUMEN
Two experiments were conducted to evaluate the effects of Fe injection timing after birth on suckling and subsequent nursery and growing-finishing pig performance. The injectable Fe source used in both experiments was GleptoForte (Ceva Animal Health, LLC., Lenexa, KS). GleptoForte contains gleptoferron which is a Fe macromolecule complex. In Exp. 1, a total of 324 newborn pigs (DNA 241 × 600, initially 1.6 ± 0.04 kg body weight [BW]) within 27 litters were used. Two days after birth, all piglets were weighed, and six barrows and six gilts per litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided in a single injection on d 2, 4, 6, 8, or 10 of age. Pigs were weaned (~21 d of age) and allotted to nursery pens with all pigs in each pen having received the same Fe treatment. In Exp. 2, a total of 1,892 newborn pigs (PIC 359 × C40; initially 1.5 ± 0.02 kg BW) within 172 litters were used. One day after birth, piglets were weighed, and 11 pigs within each litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided on d 1, 3, 5, or 7 of age, or 200 mg on d 1 plus 200 mg on d 12 of age. Pigs were weaned (19 d of age) and placed in a commercial wean-to-finish facility in a total of 15 pens with equal representation of treatments in each pen. In both experiments, not providing an Fe injection after birth decreased (P < 0.05) preweaning average daily gain (ADG), weaning weight, and hemoglobin and hematocrit values compared with all other treatments. In Exp. 1, increasing the age that piglets received an Fe injection until 4 or 6 d after birth provided marginal evidence for an improvement (quadratic; P = 0.070) in preweaning ADG. For the nursery period, increasing the age that piglets received an Fe injection improved (quadratic; P = 0.013) d 80 BW, but there was no evidence of a difference (P > 0.10) in d 173 BW at the end of the grow-finish period. In Exp. 2, increasing the age that piglets received a 200 mg Fe injection showed no evidence of difference (P > 0.10) for subsequent nursery and growing-finishing ADG. In both experiments, hemoglobin and hematocrit values were decreased (linear; P < 0.05) at weaning with increasing age when pigs received an Fe injection. These experiments suggest that providing a 200 mg Fe injection within 7 d after farrowing is sufficient for optimizing preweaning and subsequent growth performance.
Asunto(s)
Alimentación Animal , Hierro , Alimentación Animal/análisis , Animales , Peso Corporal , Dieta , Femenino , Hematócrito/veterinaria , Porcinos , DesteteRESUMEN
A total of 710 pigs (Line 400 × 200, DNA, Columbus, net energy (NE)) were used in two experiments (Exp. 1: initially, 6.3 ± 0.05 kg; Exp. 2: initially, 6.8 ± 0.05 kg) to evaluate the effects of two medium-chain fatty acid (MCFA) based products on nursery pig growth performance. Following their arrival at the nursery facility, pigs were randomized to pens (five pigs per pen) and allowed a 4-d acclimation period. Thereafter, pens of pigs were blocked by initial weight and randomized to dietary treatment. In Exp. 1, the dietary treatments were a dose titration of: 0%, 0.5%, 1.0%, or 2.0% MCFA-based additive, as well as a diet including 1.0% MCFA from a 1:1:1 blend of C6:0, C8:0, and C10:0. In Exp.2, dietary treatments consisted of a basal diet containing no MCFA (control), the control diet with a 1.0% inclusion of four different blends of MCFA, lactic acid, and monolaurin or a diet with 1.0% added MCFA (a 1:1:1 blend of C6:0, C8:0, and C10:0). The four blends consisted of 50% C6:0, 20% lactic acid, and increasing levels of monolaurin (0%, 10%, 20%, and 30%) at the expense of C12:0 (30%, 20%, 10%, and 0%). Treatment diets were formulated and manufactured in two dietary phases. Data were analyzed as a randomized complete block design with pen as the experimental unit. In Exp. 1, overall (days 0-34), increasing CaptiSURE increased (linear, P ≤ 0.014) average daily gain (ADG) and average daily feed intake (ADFI). Feed efficiency improved (quadratic, P = 0.002) with increasing CaptiSURE up to 1.0% of the diet with no benefit thereafter. There was no evidence for differences between pigs fed 1.0% CaptiSURE and pigs fed the 1.0% MCFA blend of C6:0, C8:0, and C10:0. In Exp. 2, overall (days 0-35), pigs fed the 1.0% 1:1:1 MCFA blend had increased (P < 0.034) ADFI and ADG resulting in 0.9 kg greater final weight (P = 0.014) compared with the control group. There was no evidence that the mean performance of pigs fed the four blends of MCFA, lactic acid, and monolaurin were different from the pigs fed the control diet. In summary, the addition of a 1.0% 1:1:1 blend of C6:0, C8:0, and C10:0 in nursery pig diets improved ADG, ADFI, and gain to feed ratio (G:F) compared with pigs fed the control diet. In addition, providing nursery pigs with the MCFA product CaptiSURE, up to 2% of the diet, resulted in linear improvements in ADG and ADFI. Altering the C12:0 to monolaurin ratio and adding lactic acid did not improve growth performance compared with pigs fed the control diet.
RESUMEN
A total of 140 weanling pigs (241 × 600, DNA, Columbus, NE; initially 5.5 ± 0.79 kg body weight) were used in a 32-d study evaluating the effects of increasing dietary Fe from either iron sulfate (FeSO4) or iron carbonate (FeCO3) on nursery pig growth performance and blood Fe status. The pigs used for this trial did not receive an Fe injection after birth in order to increase the sensitivity to added dietary Fe after weaning. Pigs were weaned at approximately 21 d and allotted to pens based on the initial weight in a completely randomized block design with five pigs in each pen and four pens per treatment. Experimental treatments were arranged as a 2 × 3 + 1 factorial with main effects of dietary Fe source (FeSO4 vs. FeCO3) and level (10, 30, or 50 mg/kg of added Fe) plus a negative control with no additional dietary Fe. The basal diet contained 40 mg/kg total dietary Fe based on ingredient contributions and was formulated with an Fe-free trace mineral premix. Experimental diets were formulated below the pigs recommended Fe requirement based on NRC (2012) estimates. Experimental diets were fed in pellet form in a single phase for the duration of the trial. From day 0 to 32, there was no evidence for source × level interactions for growth performance, hemoglobin (Hb), or hematocrit (Hct) values. There was no evidence for a difference (P > 0.10) in dietary Fe source. Providing increasing Fe levels in the diet from either FeSO4 or FeCO3 improved (P < 0.05) average daily gain, average daily feed intake, gain-to-feed ratio, and increased (P < 0.05) Hb and Hct values. A day effect (P = 0.001) was observed for both Hb and Hct with values increasing throughout the study. Increasing dietary Fe levels in the diet from either FeSO4 or FeCO3 increased (linear; P < 0.05) Hb and Hct values on days 14, 21, and 32. In summary, these data suggest that the micronized form of FeCO3 is a source of Fe that can be added to nursery diets to yield similar responses to those observed from FeSO4 supplementation. Similar to previous research, increasing dietary Fe improved the growth performance and increased Hb and Hct values when pigs have low Fe status at weaning.
Asunto(s)
Alimentación Animal/análisis , Carbonatos/farmacología , Compuestos Férricos/farmacología , Compuestos Ferrosos/farmacología , Hierro/administración & dosificación , Porcinos/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Peso Corporal/efectos de los fármacos , Carbonatos/administración & dosificación , Dieta/veterinaria , Femenino , Compuestos Férricos/administración & dosificación , Compuestos Ferrosos/administración & dosificación , Hematócrito/veterinaria , Masculino , OligoelementosRESUMEN
BACKGROUND: Two experiments were conducted to determine the effects of increasing amounts of soybean meal (SBM) in swine diets and estimate the energy value of SBM. METHODS: A total of 2233 pigs (PIC 337 × 1050, Hendersonville, TN) and 3796 pigs (PIC 359 × C40), initially 11.0 kg and 17.6 kg body weight (BW), were used in Exp. 1 and 2, respectively. In Exp. 1, pigs were placed in 92 pens each containing 20 to 27 pigs. In Exp. 2, pigs were placed in 84 pens each containing 37 to 43 pigs. Treatments were assigned in a randomized complete block design with BW as the blocking factor. Dietary treatments consisted of 21%, 27%, 33%, or 39% SBM in Exp. 1 and 17.5%, 22%, 26.5%, 31%, 35.5%, or 40% SBM in Exp. 2, obtained by changing the inclusion rate of feed-grade amino acids and corn grain. For Exp. 1, representative samples of corn grain, SBM, and distillers dried grains with solubles were analyzed for total AA content prior to diet formulation. For Exp. 2, diets were formulated using NRC (2012) nutrient loadings. Treatment diets were fed for 21 and 22 d (Exp. 1 and 2) and there were 23 replicates in Exp. 1 and 14 replicates in Exp. 2. Pigs were weighed and feed disappearance measured weekly to calculate average daily gain (ADG), average daily feed intake (ADFI), gain-to-feed ratio (G:F), and caloric efficiency (CE). Data were analyzed with block as a random effect and treatment as a fixed effect, and contrasts were constructed to test the linear and quadratic effects of increasing SBM. RESULTS: In Exp. 1, there was a tendency (linear, P = 0.092) for a decrease in ADFI as SBM increased. There was a tendency (P = 0.090) for a quadratic response for ADG, with a decrease in ADG observed with 39% SBM inclusion. Pigs fed diets with increasing SBM had a tendency (quadratic, P = 0.069) for an increase in G:F up to 33% SBM and an improvement (linear, P = 0.001; quadratic, P = 0.063) in CE with increasing SBM. Using CE to estimate the energy of SBM relative to corn, a value of 105.4% of corn energy or 2816 kcal/kg NE was determined using all data points. When removing the CE value of the 39% SBM treatment due to the quadratic tendency, SBM was estimated to have 121.1% of corn energy or 3236 kcal/kg NE. In Exp. 2, there was a decrease (linear, P = 0.001) in ADFI. Pigs fed increasing SBM had a tendency (linear, P = 0.065) for reduced ADG but an improvement (linear, P = 0.001) in G:F and CE as SBM increased. The energy value of SBM was estimated as 124.7% of corn energy or 3332 kcal/kg NE. CONCLUSIONS: The results suggest that feeding increasing levels of SBM improves G:F and CE. The energy value of SBM was estimated to be between 105% and 125% of corn, which is much greater than the NRC (2012) would indicate.
RESUMEN
A total of 336 newborn pigs (DNA 241 × 600, initially 1.75 ± 0.05 kg bodyweight [BW]) from 28 litters were used in a 63-d study evaluating the effects of increasing injectable Fe dose on suckling and subsequent nursery pig performance and blood Fe status. GleptoForte (Ceva Animal Health, LLC, Lenexa, KS) contains gleptoferron which is an Fe macromolecule complex that is commercially used as an injectable Fe source for suckling piglets. On the day of processing (day 3 after birth), all piglets were weighed and 6 barrows and 6 gilts per litter were allotted within sex to 1 of 6 treatments in a completely randomized design. Treatments consisted of a negative control receiving no Fe injection and increasing injectable Fe to achieve either 50, 100, 150, 200 mg, or 200 mg plus a 100 mg injection on day 11 after birth. Pigs were weaned (~21 d of age) and allotted to nursery pens based on BW and corresponding treatment in a completely randomized design. During lactation, increasing injectable Fe up to 100 mg improved (quadratic; P < 0.05) average daily gain (ADG) and day 21 BW with no further improvement thereafter. There was no evidence of differences (P > 0.10) observed between the 200 mg and 200 mg + 100 mg treatments for growth. For the nursery period, increasing Fe dosage increased (linear; P < 0.05) ADG, average daily feed intake, and day 42 BW. There was no evidence of differences (P > 0.10) between the 200 mg and 200 mg + 100 mg treatments for nursery growth. For blood criteria, significant treatment × day interactions (P = 0.001) were observed for hemoglobin (Hb) and hematocrit (Hct). The interactions occurred because pigs that had <150 mg of injectable Fe had decreased values to day 21 and then increased to day 63 while pigs with 150 or 200 mg of injectable Fe had increased values to day 21 then stayed relatively constant to day 63. In summary, piglet performance during lactation was maximized at 100 mg while nursery growth performance and blood Fe status were maximized with a 200 mg Fe injection at processing. Providing an additional 100 mg of Fe on day 11 of age increased Hb, and Hct values at weaning and 14 d into the nursery but did not provide a growth performance benefit in lactation or nursery. These results indicate that providing 200 mg of injectable Fe provided from GleptoForte is sufficient to optimize lactation and subsequent nursery growth performance and blood Fe status.
Asunto(s)
Complejo Hierro-Dextran/administración & dosificación , Hierro/administración & dosificación , Azúcares Ácidos/administración & dosificación , Porcinos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Peso Corporal , Dieta , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Hematócrito/veterinaria , Masculino , Enfermedades de los PorcinosRESUMEN
A total of 300 nursery pigs (initially 5.9 ± 0.05 kg BW) were used in a 42-d growth trial to evaluate the effects of feeding a therapeutic level of chlortetracycline (CTC) with or without direct fed microbials (DFM) on growth performance and antimicrobial resistance (AMR) of fecal Escherichia coli. CTC is a broad-spectrum in-feed antibiotic commonly used in the swine industry. Weaned pigs (~21 d of age) were allotted to pens based on initial BW and fed a common starter diet for 4 d. Pens were then blocked by BW and allotted to dietary treatments in a completely randomized block design. Dietary treatments were arranged in a 2 × 3 factorial consisting of combinations of CTC (none vs. 400 mg/kg from days 0 to 42) and DFM (0 vs. 0.05% DFM 1 vs. 0.05% DFM 2). Fecal samples were collected from three randomly selected pigs from each pen on days 0, 21, and 42 for E. coli isolation and AMR determination. Overall, pigs fed diets containing CTC had improved (P < 0.001) ADG, ADFI, and BW compared to those not fed CTC with no evidence for any effect of either DFM 1 or DFM 2. Regardless of CTC, inclusion of DFM 2 in diets improved (P < 0.05) ADFI from days 0 to 14 and on day 14 BW compared to diets that did not include DFM 2. The addition of CTC with or without DFMs to nursery pig diets increased (P < 0.05) the probability of AMR to tetracycline and ceftiofur of fecal E. coli isolates, but this resistance generally decreased (P < 0.05) over time. A decrease (P < 0.05) in AMR to ampicillin and tetracycline (TET) throughout the trial was observed, while resistance to ceftriaxone decreased (P < 0.020) from days 0 to 21 and increased from days 21 to 42 amongst dietary treatments regardless of CTC or DFM inclusion in the diet. A CTC × DFM × day interaction (P < 0.015) was observed for streptomycin, whereby from days 21 to 42 AMR increased in diets containing either CTC or DFM 1 alone, but the combination decreased resistance. There was no evidence for any effect of DFMs on AMR of fecal E. coli isolates to any other antibiotics evaluated. In conclusion, therapeutic levels of added CTC with or without DFM inclusion improved nursery pig performance, but increased AMR of fecal E. coli isolates to TET and ceftiofur. A moderate improvement in intake and day 14 BW was observed when DFM 2 was included in the diet with or without CTC, but, except for streptomycin, there was no evidence that added dietary DFMs affected resistance of fecal E. coli to antibiotics.
Asunto(s)
Antibacterianos/farmacología , Clortetraciclina/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Clortetraciclina/administración & dosificación , Dieta/veterinaria , Heces , Masculino , DesteteRESUMEN
Three studies evaluated the effects of added dietary salt on growth performance of pigs weighing 7 to 10, 11 to 30, and 27 to 65 kg. In experiment 1, 325 pigs were used with 5 pigs per pen and 13 pens per treatment. Pigs were fed a diet (0.39% Na and 0.78% Cl) for 7 d after weaning, then randomly assigned to diets with either 0, 0.20, 0.40, 0.60, or 0.80% added salt for 14 d. All diets were corn-soybean meal-based with 10% dried whey. Calculated Na concentrations were 0.11, 0.19, 0.27, 0.35, and 0.43% and calculated Cl concentrations were 0.23, 0.35, 0.47, 0.59, and 0.70%, respectively. Increasing salt increased (linear, P < 0.05) average daily gain (ADG) and gain to feed ratio (G:F). For ADG, the linear, quadratic polynomial (QP), and broken-line linear (BLL) models were competing with the breakpoint for the BLL at 0.59% salt. For G:F, the BLL reported a breakpoint at 0.33% while the QP indicated maximum G:F at 0.67% added salt. In experiment 2, 300 pigs were used in a 34-d trial with 5 pigs per pen and 12 pens per treatment. Pigs were weaned at 21 d of age and fed a phase 1 diet (0.50% Na and 0.67% Cl) for 11 d and then a phase 2 diet (0.35% Na and 0.59% Cl) for 14 d. Then pens of pigs were randomly assigned to corn-soybean meal-based diets containing 0.20, 0.35, 0.50, 0.65, or 0.80% added salt. Calculated dietary Na concentration were 0.10, 0.16, 0.22, 0.28, and 0.34% and calculated Cl concentrations were 0.23, 0.32, 0.41, 0.50, and 0.59%, respectively. Overall, ADG and G:F increased (quadratic, P < 0.07) with increasing added salt. For ADG, the QP and BLL had similar fit with the breakpoint for BLL at 0.51% added salt. For G:F, the BLL model predicted a break point at 0.35% added salt. In experiment 3, 1,188 pigs were used in a 44-d study with 27 pigs per pen and 11 pens per treatment. Pens of pigs were randomly assigned to corn-soybean meal-based diets containing 0.10, 0.33, 0.55, or 0.75% added salt. Calculated dietary Na concentrations were 0.10, 0.19, 0.28, and 0.36% and calculated Cl concentrations were 0.23, 0.36, 0.49, and 0.61%, respectively. Overall, there was no evidence to indicate that added salt above 0.10% of the diet affected growth. In conclusion, the BLL models suggested to maximize ADG for 7 to 10 and 11 to 30 kg pigs was 0.59% (0.34% Na and 0.58% Cl) and 0.51% added salt (0.22% Na and 0.42% Cl), respectively. There was no evidence that growth of 27 to 65 kg pigs was improved beyond 0.10% added salt (0.11% Na and 0.26% Cl).