RESUMEN
Anthropogenic pressure is increasing the variety and frequency of environmental disturbance events, limiting recovery and leading to long-term declines in wild plant and animal populations. Coral reefs and associated fish assemblages are inherently dynamic due to their susceptibility to a host of disturbances, but regional-scale nuances in the drivers of long-term change frequently remain poorly resolved. Here, we examine the effects of multiple potential drivers of change in coral reef fish assemblages across 4 inshore regions of the Great Barrier Reef Marine Park (GBRMP), Australia, over 12-14 years (2007-2021). Each region had a unique disturbance history, in conjunction with long-term changes in physical and habitat variables. Phases of recovery were apparent in the years between disturbance events at all locations, but these were not long enough to prevent substantial declines in reef fish density (by 33%-72%) and species richness (by 41%-75%) throughout the study period. The main drivers of change in fish assemblages varied among regions; however, the most rapid changes followed cyclone and flood events. Limited recovery periods resulted in temporal shifts in fish species composition from typically coral-associated to algae-associated. Most trophic groups declined in density except farmers, grazers, omnivores and parrotfish. No-take marine reserves (NTMRs) had small and inconsistent effects on total fish assemblages, but delivered benefits for fishery-targeted piscivores. Our findings suggest that coral reef responses to local stressors and cumulative escalating climate change impacts are highly variable at regional scales, and that small NTMRs are unlikely to mitigate the impacts of increasingly frequent climatic disturbances. Nearshore coral reefs worldwide are high-value habitats that are either already degraded or vulnerable to degradation and the loss of important fish groups. Global efforts to reduce greenhouse gas emissions must be coupled with effective local management that can support the functioning and adaptive capacity of coral reefs.
Asunto(s)
Arrecifes de Coral , Peces , Animales , Peces/fisiología , Australia , Biodiversidad , Conservación de los Recursos Naturales , Dinámica Poblacional , Parques Recreativos , Cambio ClimáticoRESUMEN
Outbreaks of corallivorous Crown of Thorns Starfish (Acanthaster spp.; CoTS) cause substantial coral mortality throughout the Indo-Pacific, particularly on the Great Barrier Reef (GBR). Refining CoTS population density modelling and understanding the disparities between real-world observations and model predictions is crucial for developing effective control strategies. Using a spatially explicit ecosystem model of the GBR, we compared CoTS density model predictions to observations and incorporated a new zone-specific mortality rate to account for differences in predation of CoTS between fished and protected reefs. We found high congruence between predictions and observations: â¼81 % of categorical reef level CoTS densities matched or only differed by one category. However, underpredictions increased with higher observed densities. Zone-specific CoTS mortality reduced severe underpredictions from 7.1 % to 5.6 %, which is critical for managers as underpredictions indicate missing outbreaks where targeted culling is necessary, but also lead to underestimated coral loss attributed to CoTS outbreaks. Reef protection status affected prediction accuracy, highlighting the importance of further research on in situ CoTS mortality rates. The location of a reef inside or outside the "initiation box", a speculative area of primary outbreaks (i.e., initial abrupt population increases) on the GBR, also influenced accuracy, with exact predictions more likely outside. Accurately modelling initiation box dynamics is challenging due to limited empirical data on CoTS outbreaks, highlighting the need for focussed research on outbreak dynamics to enhance predictive accuracy. Spatial factors, such as region and shelf position, contributed to the variance between observations and predictions, underscoring the importance of the spatial-temporal context of each observation. Observations of CoTS can help refine model predictions, guide targeted control measures, and contribute to effective ecosystem management for the long-term resilience of the GBR and other reefs targeted by CoTS throughout the Indo-Pacific.
Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Estrellas de Mar , Animales , Conservación de los Recursos Naturales/métodos , Antozoos , Densidad de Población , Monitoreo del AmbienteRESUMEN
Resilience-based management is essential to protect ecosystems in the Anthropocene. Unlike large-scale climate threats to Great Barrier Reef (GBR) corals, outbreaks of coral-eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) can be directly managed through targeted culling. Here, we evaluate the outcomes of a decade of strategic COTS management in suppressing outbreaks and protecting corals during the 4th COTS outbreak wave at reef and regional scales (sectors). We compare COTS density and coral cover dynamics during the 3rd and 4th outbreak waves. During the 4th outbreak wave, sectors that received limited to no culling had sustained COTS outbreaks causing significant coral losses. In contrast, in sectors that received timely and sufficient cull effort, coral cover increased substantially, and outbreaks were suppressed with COTS densities up to six-fold lower than in the 3rd outbreak wave. In the Townsville sector for example, despite exposure to comparable disturbance regimes during the 4th outbreak wave, effective outbreak suppression coincided with relative increases in sector-wide coral cover (44%), versus significant coral cover declines (37%) during the 3rd outbreak wave. Importantly, these estimated increases span entire sectors, not just reefs with active COTS control. Outbreaking reefs with higher levels of culling had net increases in coral cover, while the rate of coral loss was more than halved on reefs with lower levels of cull effort. Our results also indicate that outbreak wave progression to adjoining sectors has been delayed, probably via suppression of COTS larval supply. Our findings provide compelling evidence that proactive, targeted, and sustained COTS management can effectively suppress COTS outbreaks and deliver coral growth and recovery benefits at reef and sector-wide scales. The clear coral protection outcomes demonstrate the value of targeted manual culling as both a scalable intervention to mitigate COTS outbreaks, and a potent resilience-based management tool to "buy time" for coral reefs, protecting reef ecosystem functions and biodiversity as the climate changes.
Asunto(s)
Antozoos , Conservación de los Recursos Naturales , Arrecifes de Coral , Estrellas de Mar , Animales , Estrellas de Mar/fisiología , Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Australia/epidemiologíaRESUMEN
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Humanos , Biodiversidad , Ecosistema , Australia , PecesRESUMEN
Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure.
Asunto(s)
Ecosistema , Peces , Animales , Invertebrados , Larva , Océanos y MaresRESUMEN
Fisheries management relies on various catch and effort controls to preserve spawning stock biomass and maximize sustainable yields while limiting fishery impacts on marine ecosystems. These include species-specific minimum or maximum size limits to protect either small non-reproductive subadults, a portion of reproductively mature adults, or large highly fecund individuals. Protecting size classes of mature fish is expected to yield a viable source of larvae for replenishing populations and reduce the risk of recruitment overfishing, yet size-specific recruitment contributions have rarely been assessed empirically. Here, we apply genetic parentage analysis to measure the reproductive success of a size-structured population of a commercially important species of coral grouper (Plectropomus maculatus-Serranidae) in no-take marine reserves (NTMRs) in the Great Barrier Reef Marine Park, Australia. Although the per capita reproductive success of individual fish increases rapidly with body length, the numerous young mature female fish, below the minimum size limit (MSL) (38 cm total length), were responsible for generating disproportionately large contributions (36%) towards larval replenishment of both fished and reserve reefs. Our findings indicate that MSLs are an effective harvest control measure to safeguard a portion of the spawning stock biomass for coral grouper and supplement recruitment subsidies assured from NTMRs.
Asunto(s)
Arrecifes de Coral , Explotaciones Pesqueras , Animales , Australia , Conservación de los Recursos Naturales , Ecosistema , Femenino , PecesRESUMEN
Well-managed and enforced no-take marine reserves generate important larval subsidies to neighboring habitats and thereby contribute to the long-term sustainability of fisheries. However, larval dispersal patterns are variable, which leads to temporal fluctuations in the contribution of a single reserve to the replenishment of local populations. Identifying management strategies that mitigate the uncertainty in larval supply will help ensure the stability of recruitment dynamics and minimize the volatility in fishery catches. Here, we use genetic parentage analysis to show extreme variability in both the dispersal patterns and recruitment contribution of four individual marine reserves across six discrete recruitment cohorts for coral grouper (Plectropomus maculatus) on the Great Barrier Reef. Together, however, the asynchronous contributions from multiple reserves create temporal stability in recruitment via a connectivity portfolio effect. This dampening effect reduces the variability in larval supply from individual reserves by a factor of 1.8, which effectively halves the uncertainty in the recruitment contribution of individual reserves. Thus, not only does the network of four marine reserves generate valuable larval subsidies to neighboring habitats, the aggregate effect of individual reserves mitigates temporal fluctuations in dispersal patterns and the replenishment of local populations. Our results indicate that small networks of marine reserves yield previously unrecognized stabilizing benefits that ensure a consistent larval supply to replenish exploited fish stocks.
Asunto(s)
Distribución Animal/fisiología , Organismos Acuáticos/fisiología , Lubina/fisiología , Conservación de los Recursos Naturales , Animales , Ecosistema , Explotaciones Pesqueras , Larva/fisiologíaRESUMEN
Quantifying the role of biophysical and anthropogenic drivers of coral reef ecosystem processes can inform management strategies that aim to maintain or restore ecosystem structure and productivity. However, few studies have examined the combined effects of multiple drivers, partitioned their impacts, or established threshold values that may trigger shifts in benthic cover. Inshore fringing reefs of the Great Barrier Reef Marine Park (GBRMP) occur in high-sediment, high-nutrient environments and are under increasing pressure from multiple acute and chronic stressors. Despite world-leading management, including networks of no-take marine reserves, relative declines in hard coral cover of 40-50% have occurred in recent years, with localized but persistent shifts from coral to macroalgal dominance on some reefs. Here we use boosted regression tree analyses to test the relative importance of multiple biophysical drivers on coral and macroalgal cover using a long-term (12-18 yr) data set collected from reefs at four island groups. Coral and macroalgal cover were negatively correlated at all island groups, and particularly when macroalgal cover was above 20%. Although reefs at each island group had different disturbance-and-recovery histories, degree heating weeks (DHW) and routine wave exposure consistently emerged as common drivers of coral and macroalgal cover. In addition, different combinations of sea-surface temperature, nutrient and turbidity parameters, exposure to high turbidity (primary) floodwater, depth, grazing fish density, farming damselfish density, and management zoning variously contributed to changes in coral and macroalgal cover at each island group. Clear threshold values were apparent for multiple drivers including wave exposure, depth, and degree heating weeks for coral cover, and depth, degree heating weeks, chlorophyll a, and cyclone exposure for macroalgal cover, however, all threshold values were variable among island groups. Our findings demonstrate that inshore coral reef communities are typically structured by broadscale climatic perturbations, superimposed upon unique sets of local-scale drivers. Although rapidly escalating climate change impacts are the largest threat to coral reefs of the GBRMP and globally, our findings suggest that proactive management actions that effectively reduce chronic stressors at local scales should contribute to improved reef resistance and recovery potential following acute climatic disturbances.
Asunto(s)
Antozoos , Animales , Clorofila A , Arrecifes de Coral , Ecosistema , PecesRESUMEN
Larval dispersal is a critically important yet enigmatic process in marine ecology, evolution, and conservation. Determining the distance and direction that tiny larvae travel in the open ocean continues to be a challenge. Our current understanding of larval dispersal patterns at management-relevant scales is principally and separately informed by genetic parentage data and biological-oceanographic (biophysical) models. Parentage datasets provide clear evidence of individual larval dispersal events, but their findings are spatially and temporally limited. Biophysical models offer a more complete picture of dispersal patterns at regional scales but are of uncertain accuracy. Here, we develop statistical techniques that integrate these two important sources of information on larval dispersal. We then apply these methods to an extensive genetic parentage dataset to successfully validate a high-resolution biophysical model for the economically important reef fish species Plectropomus maculatus in the southern Great Barrier Reef. Our results demonstrate that biophysical models can provide accurate descriptions of larval dispersal at spatial and temporal scales that are relevant to management. They also show that genetic parentage datasets provide enough statistical power to exclude poor biophysical models. Biophysical models that included species-specific larval behaviour provided markedly better fits to the parentage data than assuming passive behaviour, but incorrect behavioural assumptions led to worse predictions than ignoring behaviour altogether. Our approach capitalises on the complementary strengths of genetic parentage datasets and high-resolution biophysical models to produce an accurate picture of larval dispersal patterns at regional scales. The results provide essential empirical support for the use of accurately parameterised biophysical larval dispersal models in marine spatial planning and management.
Asunto(s)
Distribución Animal/fisiología , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Modelos Biológicos , Animales , Peces/fisiología , Geografía , Larva/fisiología , Biología Marina/métodos , Océanos y Mares , Perciformes/fisiología , Dinámica Poblacional , Reproducibilidad de los ResultadosRESUMEN
Marine reserve networks are increasingly implemented to conserve biodiversity and enhance the persistence and resilience of exploited species and ecosystems. However, the efficacy of marine reserve networks in frequently disturbed systems, such as coral reefs, has rarely been evaluated. Here we analyze a well-mixed larval pool model and a spatially explicit model based on a well-documented coral trout (Plectropomus spp.) metapopulation in the Great Barrier Reef Marine Park, Australia, to determine the effects of marine reserve coverage and placement (in relation to larval connectivity and disturbance heterogeneity) on the temporal stability of fisheries yields and population biomass in environmentally disturbed systems. We show that marine reserves can contribute to stabilizing fishery yield while increasing metapopulation persistence, irrespective of whether reserves enhance or diminish average fishery yields. However, reserve placement and the level of larval connectivity among subpopulations were important factors affecting the stability and sustainability of fisheries and fish metapopulations. Protecting a mix of disturbed and non-disturbed reefs, rather than focusing on the least-disturbed habitats, was the most consistently beneficial approach across a range of dispersal and reserve coverage scenarios. Placing reserves only in non-disturbed areas was the most beneficial for biomass enhancement, but had variable results for fisheries and could potentially destabilize yields in systems with well-mixed larval or those that are moderately fished. We also found that focusing protection on highly disturbed areas could actually increase variability in yields and biomass, especially when degraded reef reserves were distant and poorly connected to the meta-population. Our findings have implications for the design and implementation of reserve networks in the presence of stochastic, patchy environmental disturbances.
Asunto(s)
Arrecifes de Coral , Explotaciones Pesqueras , Animales , Australia , Conservación de los Recursos Naturales , Ecosistema , PecesRESUMEN
Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long-standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar-cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first- and later-generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome-wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.
Asunto(s)
Genética de Población , Hibridación Genética , Perciformes/clasificación , Simpatría , Animales , Australia , Arrecifes de Coral , Flujo Génico , Genotipo , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Selección GenéticaRESUMEN
Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13-19 km, with 90% of settlement occurring within 31-43 km. Mean dispersal distances were considerably greater (43-64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.
RESUMEN
Diet specificity is likely to be the key predictor of a predator's vulnerability to changing habitat and prey conditions. Understanding the degree to which predatory coral reef fishes adjust or maintain prey choice, in response to declines in coral cover and changes in prey availability, is critical for predicting how they may respond to reef habitat degradation. Here, we use stable isotope analyses to characterize the trophic structure of predator-prey interactions on coral reefs of the Keppel Island Group on the southern Great Barrier Reef, Australia. These reefs, previously typified by exceptionally high coral cover, have recently lost much of their coral cover due to coral bleaching and frequent inundation by sediment-laden, freshwater flood plumes associated with increased rainfall patterns. Long-term monitoring of these reefs demonstrates that, as coral cover declined, there has been a decrease in prey biomass, and a shift in dominant prey species from pelagic plankton-feeding damselfishes to territorial benthic algal-feeding damselfishes, resulting in differences in the principal carbon pathways in the food web. Using isotopes, we tested whether this changing prey availability could be detected in the diet of a mesopredator (coral grouper, Plectropomus maculatus). The δ13C signature in grouper tissue in the Keppel Islands shifted from a more pelagic to a more benthic signal, demonstrating a change in carbon sources aligning with the change in prey availability due to habitat degradation. Grouper with a more benthic carbon signature were also feeding at a lower trophic level, indicating a shortening in food chains. Further, we found a decline in the coral grouper population accompanying a decrease in total available prey biomass. Thus, while the ability to adapt diets could ameliorate the short-term impacts of habitat degradation on mesopredators, long-term effects may negatively impact mesopredator populations and alter the trophic structure of coral reef food webs.
RESUMEN
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60-220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.
Asunto(s)
Distribución Animal , Lubina/genética , Arrecifes de Coral , Genética de Población , Animales , Australia , LarvaRESUMEN
Marine reserves are often established in areas that support fisheries. Larval export from reserves is argued to help compensate for the loss of fishable habitat; however, previous modeling studies have focused on long-term equilibrium outcomes. We examined the transient consequences of reserve establishment for fished metapopulations, considering both a well-mixed larval pool and a spatially explicit model based on a coral trout (Plectropomus spp.) metapopulation. When fishing pressure was reallocated relative to the area protected, yields decreased initially, then recovered, and ultimately exceeded pre-reserve levels. However, recovery time was on the order of several years to decades. If fishing pressure intensified to maintain pre-reserve yields, reserves were sometimes unable to support the increased mortality and the metapopulation collapsed. This was more likely when reserves were small, or located peripherally within the metapopulation. Overall, reserves can achieve positive conservation and fishery benefits, but fisheries management complementary to reserve implementation is essential.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Modelos Biológicos , Perciformes/fisiología , Distribución Animal , Animales , Arrecifes de Coral , Larva/fisiología , Dinámica Poblacional , Factores de TiempoRESUMEN
Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method's utility in information-poor contexts common in marine conservation.
Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/organización & administración , Larva/fisiología , Perciformes/fisiología , Trucha/fisiología , Animales , Australia , Biodiversidad , Arrecifes de Coral , Ecosistema , Islas , Técnicas de PlanificaciónRESUMEN
Marine no-take reserves, where fishing and other extractive activities are prohibited, have well-established conservation benefits [1], yet their impacts on fisheries remains contentious [2-4]. For fishery species, reserves are often implemented alongside more conventional harvest strategies, including catch and size limits [2, 5]. However, catch and fish abundances observed post-intervention are often attributed to reserves, without explicitly estimating the potential contribution of concurrent management interventions [2, 3, 6-9]. Here we test a metapopulation model against observed fishery [10] and population [11] data for an important coral reef fishery (coral trout; Plectropomus spp.) in Australia's Great Barrier Reef Marine Park (GBRMP) to evaluate how the combined increase in reserve area [12] and reduction in fishing effort [13, 14] in 2004 influenced changes in fish stocks and the commercial fishery. We found that declines in catch, increases in catch rates, and increases in biomass since 2004 were substantially attributable to the integration of direct effort controls with the rezoning, rather than the rezoning alone. The combined management approach was estimated to have been more productive for fish and fisheries than if the rezoning had occurred alone and comparable to what would have been obtained with effort controls alone. Sensitivity analyses indicate that the direct effort controls prevented initial decreases in catch per unit effort that would have otherwise occurred with the rezoning. Our findings demonstrate that by concurrently restructuring the fishery, the conservation benefits of reserves were enhanced and the fishery cost of rezoning the reserve network was socialized, mitigating negative impacts on individual fishers.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Explotaciones Pesqueras/estadística & datos numéricos , Modelos Biológicos , Perciformes , Animales , AustraliaRESUMEN
Marine protected areas can prevent over-exploitation, but their effect on marine diseases is less clear. We examined how marine reserves can reduce diseases affecting reef-building corals following acute and chronic disturbances. One year after a severe tropical cyclone, corals inside reserves had sevenfold lower levels of disease than those in non-reserves. Similarly, disease prevalence was threefold lower on reserve reefs following chronic exposure to terrestrial run-off from a degraded river catchment, when exposure duration was below the long-term site average. Examination of 35 predictor variables indicated that lower levels of derelict fishing line and injured corals inside reserves were correlated with lower levels of coral disease in both case studies, signifying that successful disease mitigation occurs when activities that damage reefs are restricted. Conversely, reserves were ineffective in moderating disease when sites were exposed to higher than average levels of run-off, demonstrating that reductions in water quality undermine resilience afforded by reserve protection. In addition to implementing protected areas, we highlight that disease management efforts should also target improving water quality and limiting anthropogenic activities that cause injury.
Asunto(s)
Antozoos/microbiología , Conservación de los Recursos Naturales/métodos , Animales , Arrecifes de Coral , Interacciones Huésped-PatógenoRESUMEN
The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no-take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well-connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582-993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long-term persistence.
Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Genética de Población , Perciformes/genética , Distribución Animal , Animales , Australia , Explotaciones Pesqueras , Técnicas de Genotipaje , Larva , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADNRESUMEN
Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by â¼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a â¼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near-shore coral reefs underscores the importance of integrated management approaches that combine effective land-based management with networks of no-take reserves.