Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Pediatr Radiol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123082

RESUMEN

In patients with drug-resistant epilepsy, difficulties in identifying the epileptogenic zone are well known to correlate with poorer clinical outcomes post-surgery. The integration of PET and MRI in the presurgical assessment of pediatric patients likely improves diagnostic precision by confirming or widening treatment targets. PET and MRI together offer superior insights compared to either modality alone. For instance, PET highlights abnormal glucose metabolism, while MRI precisely localizes structural anomalies, providing a comprehensive understanding of the epileptogenic zone. Furthermore, both methodologies, whether utilized through simultaneous PET/MRI scanning or the co-registration of separately acquired PET and MRI data, present unique advantages, having complementary roles in lesional and non-lesional cases. Simultaneous FDG-PET/MRI provides precise co-registration of functional (PET) and structural (MR) imaging in a convenient one-stop-shop approach, which minimizes sedation time and reduces radiation exposure in children. Commercially available fusion software that allows retrospective co-registration of separately acquired PET and MRI images is a commonly used alternative. This review provides an overview and illustrative cases that highlight the role of combining 18F-FDG-PET and MRI imaging and shares the authors' decade-long experience utilizing simultaneous PET/MRI in the presurgical evaluation of pediatric epilepsy.

2.
Nat Hum Behav ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187713

RESUMEN

Despite long knowing what brain areas support language comprehension, our knowledge of the neural computations that these frontal and temporal regions implement remains limited. One important unresolved question concerns functional differences among the neural populations that comprise the language network. Here we leveraged the high spatiotemporal resolution of human intracranial recordings (n = 22) to examine responses to sentences and linguistically degraded conditions. We discovered three response profiles that differ in their temporal dynamics. These profiles appear to reflect different temporal receptive windows, with average windows of about 1, 4 and 6 words, respectively. Neural populations exhibiting these profiles are interleaved across the language network, which suggests that all language regions have direct access to distinct, multiscale representations of linguistic input-a property that may be critical for the efficiency and robustness of language processing.

3.
Brain Commun ; 6(4): fcae179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015765

RESUMEN

The piriform cortex is recognized as highly epileptogenic in rodents, yet its electrophysiological role in human epilepsy remains understudied. Recent surgical outcomes have suggested potential benefits in resecting the piriform cortex for cases of medial temporal lobe epilepsy. However, little is known about its electrophysiological activity in human epilepsy. This case-series study aimed to explore the electrophysiological role of the piriform cortex within the epileptogenic network among patients with suspected temporal lobe epilepsy. Participants were recruited from Emory University Hospital or Children's Healthcare of Atlanta, with non-lesional frontotemporal or temporal lobe hypotheses, undergoing stereoelectroencephalographic studies. Specifically, focus was placed on patients with one or more electrode contacts in the piriform cortex. Primary objectives included determining piriform cortex involvement within the electrophysiologically defined epileptogenic network and assessing the effects of electrical stimulation. Twenty-two patients were included in the study. Notably, only one patient exhibited piriform cortex involvement at seizure onset, associated with an olfactory aura. Two patients showed early piriform cortex involvement, while others displayed late or no involvement. Electrical stimulation of the piriform cortex induced after-discharges in three patients and replicated a habitual seizure in one. These findings present a contrast to surgical outcome studies, suggesting that the piriform cortex may not typically play a significant role in the epileptogenic network among patients with non-lesional temporal lobe epilepsy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39001603

RESUMEN

OBJECTIVE: To predict one-year seizure freedom, using a combination of relevant clinical variables, following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a series of 101 patients. METHODS: Eight predictors of seizure freedom were selected based on their association with medial temporal lobe epilepsy: (1) MRI evidence of mesial temporal sclerosis (MTS); (2) unitemporal interictal epileptiform discharges; (3) absence of generalized tonic-clonic seizures; (4) history of febrile seizures; (5) onset of epilepsy ≤16 years; (6) absence of an auditory, visual, or vertiginous aura; and (7) unitemporal ictal onset; (8) unitemporal PET hypometabolism. We compared four multivariate models: "MTS," using just evidence of MTS; "FULL," using all eight binary predictors; "AIC" using backwards selection of variables; and "SCORE," using a 0-to-8-point ordinal score awarding one point for each binary predictor. RESULTS: In univariate analysis, significant predictors for seizure freedom were evidence of mesial temporal sclerosis (p = 0.011, Fisher exact) and unitemporal interictal discharges (p = 0.005). For multivariate prediction (using leave one-out cross-validation), the ordinal SCORE model had a significantly higher area under the curve (AUC 0.70) than the other three models: MTS (AUC 0.54, p = 0.002, Delong's test), FULL (AUC 0.62, p = 0.003), or AIC (AUC 0.53, p < 0.001). INTERPRETATION: An ordinal score incorporating eight independent binary clinical variables predicted seizure freedom better on novel data than a model using MTS alone, a full multivariate model, or a backwards selected model. The ordinal score model represents a simple clinical heuristic to identify which patients should be offered minimally invasive laser surgery.

5.
medRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746250

RESUMEN

Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD); however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic vs. anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioral responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 PD patients undergoing DBS implantation. Cortical evoked potentials (cEP) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEP) were recorded from non-stimulating contacts and EMG activity was recorded from arm and face muscles. We measured: 1) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, 2) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway, and 3) amplitudes of very short-latency cEP and motor evoked potentials (mEP) for activation of cortico-spinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the HDP and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.

6.
Nat Commun ; 15(1): 4308, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773117

RESUMEN

Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.


Asunto(s)
Encéfalo , Toma de Decisiones , Lóbulo Parietal , Humanos , Toma de Decisiones/fisiología , Masculino , Femenino , Adulto , Encéfalo/fisiología , Lóbulo Parietal/fisiología , Conducta de Elección/fisiología , Adulto Joven , Incertidumbre
7.
J Neurosurg ; : 1-10, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669705

RESUMEN

OBJECTIVE: The aim of this study was to identify features of responsive neurostimulation (RNS) lead configuration and contact placement associated with greater seizure reduction in mesial temporal lobe epilepsy (MTLE). METHODS: A single-center series of patients with MTLE treated with RNS were retrospectively analyzed to assess the relationship between anatomical targeting and seizure reduction. Targeting was determined according to both the preoperatively conceived lead configuration and the actual placement of RNS contacts. Three lead configurations were used: 1) single bilateral, with 1 depth lead in each hippocampus; 2) single unilateral, with 1 hippocampal depth lead and another implant outside the mesial temporal lobe; and 3) dual unilateral, with 2 leads in 1 hippocampus. Contact placement on postoperative imaging was measured according to the number of hippocampal contacts per targeted hippocampus (contact density) and per patient (contact count), distribution throughout the hippocampus, and proximity to the anteromedial hippocampus. RESULTS: Dual unilateral lead placement resulted in significantly higher hippocampal contact density compared with the single hippocampal approaches, but only showed a nonsignificant trend toward a higher rate of response. However, those patients with more than 4 contacts in a single hippocampus, achievable only with dual unilateral leads, had a significantly higher rate of response. The higher likelihood of response was poorly explained by more widespread hippocampal coverage, but well correlated with proximity to the anteromedial hippocampus. CONCLUSIONS: Dual unilateral hippocampal implantation increased RNS contact density in patients with unilateral MTLE, which contributed to improved outcomes, not by stimulating more of the hippocampus, but instead by being more likely to stimulate a latent subtarget in the anterior hippocampus. It remains to be explored whether a single electrode targeted selectively to this region would also result in improved outcomes.

8.
Brain Stimul ; 17(2): 460-468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593972

RESUMEN

BACKGROUND: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.


Asunto(s)
Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Estimulación del Nervio Vago/métodos , Vibración , Pupila/fisiología , Respuesta Galvánica de la Piel/fisiología , Nervio Vago/fisiología
9.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585960

RESUMEN

Background: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights: Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.

10.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585976

RESUMEN

The conventional intracarotid amobarbital (Wada) test has been used to assess memory function in patients being considered for temporal lobe epilepsy (TLE) surgery. Minimally invasive approaches that target the medial temporal lobe (MTL) and spare neocortex are increasingly used, but a knowledge gap remains in how to assess memory and language risk from these procedures. We retrospectively compared results of two versions of the Wada test, the intracarotid artery (ICA-Wada) and posterior cerebral artery (PCA-Wada) approaches, with respect to predicting subsequent memory and language outcomes, particularly after stereotactic laser amygdalohippocampotomy (SLAH). We included all patients being considered for SLAH who underwent both ICA-Wada and PCA-Wada at a single institution. Memory and confrontation naming assessments were conducted using standardized neuropsychological tests to assess pre- to post-surgical changes in cognitive performance. Of 13 patients who initially failed the ICA-Wada, only one patient subsequently failed the PCA-Wada (p=0.003, two-sided binomial test with p 0 =0.5) demonstrating that these tests assess different brain regions or networks. PCA-Wada had a high negative predictive value for the safety of SLAH, compared to ICA-Wada, as none of the patients who underwent SLAH after passing the PCA-Wada experienced catastrophic memory decline (0 of 9 subjects, p <.004, two-sided binomial test with p 0 =0.5), and all experienced a good cognitive outcome. In contrast, the single patient who received a left anterior temporal lobectomy after failed ICA- and passed PCA-Wada experienced a persistent, near catastrophic memory decline. On confrontation naming, few patients exhibited disturbance during the PCA-Wada. Following surgery, SLAH patients showed no naming decline, while open resection patients, whose surgeries all included ipsilateral temporal lobe neocortex, experienced significant naming difficulties (Fisher's exact test, p <.05). These findings demonstrate that (1) failing the ICA-Wada falsely predicts memory decline following SLAH, (2) PCA-Wada better predicts good memory outcomes of SLAH for MTLE, and (3) the MTL brain structures affected by both PCA-Wada and SLAH are not directly involved in language processing.

11.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562725

RESUMEN

Detecting temporal and spectral features of neural oscillations is essential to understanding dynamic brain function. Traditionally, the presence and frequency of neural oscillations are determined by identifying peaks over 1/f noise within the power spectrum. However, this approach solely operates within the frequency domain and thus cannot adequately distinguish between the fundamental frequency of a non-sinusoidal oscillation and its harmonics. Non-sinusoidal signals generate harmonics, significantly increasing the false-positive detection rate - a confounding factor in the analysis of neural oscillations. To overcome these limitations, we define the fundamental criteria that characterize a neural oscillation and introduce the Cyclic Homogeneous Oscillation (CHO) detection method that implements these criteria based on an auto-correlation approach that determines the oscillation's periodicity and fundamental frequency. We evaluated CHO by verifying its performance on simulated sinusoidal and non-sinusoidal oscillatory bursts convolved with 1/f noise. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. Specifically, we determined the sensitivity and specificity of CHO as a function of signal-to-noise ratio (SNR). We further assessed CHO by testing it on electrocorticographic (ECoG, 8 subjects) and electroencephalographic (EEG, 7 subjects) signals recorded during the pre-stimulus period of an auditory reaction time task and on electrocorticographic signals (6 SEEG subjects and 6 ECoG subjects) collected during resting state. In the reaction time task, the CHO method detected auditory alpha and pre-motor beta oscillations in ECoG signals and occipital alpha and pre-motor beta oscillations in EEG signals. Moreover, CHO determined the fundamental frequency of hippocampal oscillations in the human hippocampus during the resting state (6 SEEG subjects). In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method's specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.

12.
Epilepsy Behav ; 155: 109669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663142

RESUMEN

The purpose of this study was to systematically examine three different surgical approaches in treating left medial temporal lobe epilepsy (mTLE) (viz., subtemporal selective amygdalohippocampectomy [subSAH], stereotactic laser amygdalohippocampotomy [SLAH], and anterior temporal lobectomy [ATL]), to determine which procedures are most favorable in terms of visual confrontation naming and seizure relief outcome. This was a retrospective study of 33 adults with intractable mTLE who underwent left temporal lobe surgery at three different epilepsy surgery centers who also underwent pre-, and at least 6-month post-surgical neuropsychological testing. Measures included the Boston Naming Test (BNT) and the Engel Epilepsy Surgery Outcome Scale. Fisher's exact tests revealed a statistically significant decline in naming in ATLs compared to SLAHs, but no other significant group differences. 82% of ATL and 36% of subSAH patients showed a significant naming decline whereas no SLAH patient (0%) had a significant naming decline. Significant postoperative naming improvement was seen in 36% of SLAH patients in contrast to 9% improvement in subSAH patients and 0% improvement in ATLs. Finally, there were no statistically significant differences between surgical approaches with regard to seizure freedom outcome, although there was a trend towards better seizure relief outcome among the ATL patients. Results support a possible benefit of SLAH in preserving visual confrontation naming after left TLE surgery. While result interpretation is limited by the small sample size, findings suggest outcome is likely to differ by surgical approach, and that further research on cognitive and seizure freedom outcomes is needed to inform patients and providers of potential risks and benefits with each.


Asunto(s)
Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal , Pruebas Neuropsicológicas , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Epilepsia del Lóbulo Temporal/cirugía , Estudios Retrospectivos , Lobectomía Temporal Anterior/métodos , Lobectomía Temporal Anterior/efectos adversos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Adulto Joven , Convulsiones/cirugía , Procedimientos Neuroquirúrgicos/métodos , Lóbulo Temporal/cirugía
13.
Nat Commun ; 15(1): 3156, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605017

RESUMEN

Modulating brain oscillations has strong therapeutic potential. Interventions that both non-invasively modulate deep brain structures and are practical for chronic daily home use are desirable for a variety of therapeutic applications. Repetitive audio-visual stimulation, or sensory flicker, is an accessible approach that modulates hippocampus in mice, but its effects in humans are poorly defined. We therefore quantified the neurophysiological effects of flicker with high spatiotemporal resolution in patients with focal epilepsy who underwent intracranial seizure monitoring. In this interventional trial (NCT04188834) with a cross-over design, subjects underwent different frequencies of flicker stimulation in the same recording session with the effect of sensory flicker exposure on local field potential (LFP) power and interictal epileptiform discharges (IEDs) as primary and secondary outcomes, respectively. Flicker focally modulated local field potentials in expected canonical sensory cortices but also in the medial temporal lobe and prefrontal cortex, likely via resonance of stimulated long-range circuits. Moreover, flicker decreased interictal epileptiform discharges, a pathological biomarker of epilepsy and degenerative diseases, most strongly in regions where potentials were flicker-modulated, especially the visual cortex and medial temporal lobe. This trial met the scientific goal and is now closed. Our findings reveal how multi-sensory stimulation may modulate cortical structures to mitigate pathological activity in humans.


Asunto(s)
Epilepsias Parciales , Epilepsia , Humanos , Encéfalo , Electroencefalografía , Lóbulo Temporal , Estudios Cruzados
14.
BJA Open ; 9: 100245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38179107

RESUMEN

Background: Surgical patients with previous depression frequently experience postoperative depressive symptoms. This study's objective was to determine the feasibility of a placebo-controlled trial testing the impact of a sustained ketamine infusion on postoperative depressive symptoms. Methods: This single-centre, triple-blind, placebo-controlled randomised clinical trial included adult patients with depression scheduled for inpatient surgery. After surgery, patients were randomly allocated to receive ketamine (0.5 mg kg-1 over 10 min followed by 0.3 mg kg-1 h-1 for 3 h) or an equal volume of normal saline. Depressive symptoms were measured using the Montgomery-Asberg Depression Rating Scale. On post-infusion day 1, participants guessed which intervention they received. Feasibility endpoints included the fraction of patients approached who were randomised, the fraction of randomised patients who completed the study infusion, and the fraction of scheduled depression assessments that were completed. Results: In total, 32 patients were allocated a treatment, including 31/101 patients approached after a protocol change (31%, 1.5 patients per week). The study infusion was completed without interruption in 30/32 patients (94%). In each group, 7/16 participants correctly guessed which intervention they received. Depression assessments were completed at 170/192 scheduled time points (89%). Between baseline and post-infusion day 4 (pre-specified time point of interest), median depressive symptoms decreased in both groups, with difference-in-differences of -1.00 point (95% confidence interval -3.23 to 1.73) with ketamine compared with placebo. However, the between-group difference did not persist at other time points. Conclusions: Patient recruitment, medication administration, and clinical outcome measurement appear to be highly feasible, with blinding maintained. A fully powered trial may be warranted. Clinical trial registration: NCT05233566.

15.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260662

RESUMEN

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

16.
Cell Rep ; 43(1): 113520, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38151023

RESUMEN

Recognizing familiar faces and learning new faces play an important role in social cognition. However, the underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the human amygdala and hippocampus and find a greater neuronal representational distance between pairs of familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more distinct. Representational distance increases with exposures to the same identity, suggesting that neural face representations are sharpened with learning and familiarization. Furthermore, representational distance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces increases representational distance, thus sharpening neural representations. Finally, we construct a computational model that demonstrates an increase in the representational distance of artificial units with training. Together, our results suggest that the neuronal population geometry, quantified by the representational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition and memory.


Asunto(s)
Reconocimiento Facial , Reconocimiento en Psicología , Humanos , Reconocimiento en Psicología/fisiología , Aprendizaje , Amígdala del Cerebelo , Reconocimiento Facial/fisiología , Hipocampo , Reconocimiento Visual de Modelos/fisiología
17.
J Neural Eng ; 20(6)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38063368

RESUMEN

Objective.Single-pulse electrical stimulation (SPES) has been widely used to probe effective connectivity. However, analysis of the neural response is often confounded by stimulation artifacts. We developed a novel matching pursuit-based artifact reconstruction and removal method (MPARRM) capable of removing artifacts from stimulation-artifact-affected electrophysiological signals.Approach.To validate MPARRM across a wide range of potential stimulation artifact types, we performed a bench-top experiment in which we suspended electrodes in a saline solution to generate 110 types of real-world stimulation artifacts. We then added the generated stimulation artifacts to ground truth signals (stereoelectroencephalography signals from nine human subjects recorded during a receptive speech task), applied MPARRM to the combined signal, and compared the resultant denoised signal with the ground truth signal. We further applied MPARRM to artifact-affected neural signals recorded from the hippocampus while performing SPES on the ipsilateral basolateral amygdala in nine human subjects.Main results.MPARRM could remove stimulation artifacts without introducing spectral leakage or temporal spread. It accommodated variable stimulation parameters and recovered the early response to SPES within a wide range of frequency bands. Specifically, in the early response period (5-10 ms following stimulation onset), we found that the broadband gamma power (70-170 Hz) of the denoised signal was highly correlated with the ground truth signal (R=0.98±0.02, Pearson), and the broadband gamma activity of the denoised signal faithfully revealed the responses to the auditory stimuli within the ground truth signal with94%±1.47%sensitivity and99%±1.01%specificity. We further found that MPARRM could reveal the expected temporal progression of broadband gamma activity along the anterior-posterior axis of the hippocampus in response to the ipsilateral amygdala stimulation.Significance.MPARRM could faithfully remove SPES artifacts without confounding the electrophysiological signal components, especially during the early-response period. This method can facilitate the understanding of the neural response mechanisms of SPES.


Asunto(s)
Artefactos , Procesamiento de Señales Asistido por Computador , Humanos , Estimulación Eléctrica , Electrodos , Fenómenos Electrofisiológicos , Electroencefalografía/métodos
18.
Front Neurol ; 14: 1202631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745648

RESUMEN

Introduction: For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods: This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results: Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion: Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.

20.
J Neural Eng ; 20(4)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37429273

RESUMEN

Objective. Slow-wave modulation occurs during states of unconsciousness and is a large-scale indicator of underlying brain states. Conventional methods typically characterize these large-scale dynamics by assuming that slow-wave activity is sinusoidal with a stationary frequency. However, slow-wave activity typically has an irregular waveform shape with a non-stationary frequency, causing these methods to be highly unpredictable and inaccurate. To address these limitations, we developed a novel method using tau-modulation, which is more robust than conventional methods in estimating the modulation of slow-wave activity and does not require assumptions on the shape or stationarity of the underlying waveform.Approach. We propose a novel method to estimate modulatory effects on slow-wave activity. Tau-modulation curves are constructed from cross-correlation between slow-wave and high-frequency activity. The resultant curves capture several aspects of modulation, including attenuation or enhancement of slow-wave activity, the temporal synchrony between slow-wave and high-frequency activity, and the rate at which the overall brain activity oscillates between states.Main results. The method's performance was tested on an open electrocorticographic dataset from two monkeys that were recorded during propofol-induced anesthesia, with electrodes implanted over the left hemispheres. We found a robust propagation of slow-wave modulation along the anterior-posterior axis of the lateral aspect of the cortex. This propagation preferentially originated from the anterior superior temporal cortex and anterior cingulate gyrus. We also found the modulation frequency and polarity to track the stages of anesthesia. The algorithm performed well, even with non-sinusoidal activity and in the presence of real-world noise.Significance. The novel method provides new insight into several aspects of slow-wave modulation that have been previously difficult to evaluate across several brain states. This ability to better characterize slow-wave modulation, without spurious correlations induced by non-sinusoidal signals, may lead to robust and physiologically-plausible diagnostic tools for monitoring brain functions during states of unconsciousness.


Asunto(s)
Propofol , Inconsciencia , Humanos , Inconsciencia/inducido químicamente , Encéfalo , Electrocorticografía/métodos , Corteza Cerebral , Electroencefalografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA