Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Opt ; 63(13): 3685-3694, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856555

RESUMEN

Atomic emission spectra provide a means to identify and to gain insight into the electronic structure of emitting or absorbing matter. Detailed procedures are provided for the construction of low-pressure electrodeless discharge lamps that yield targeted emission in the vacuum ultraviolet for the spectroscopic study of water vapor and halogen species aboard an array of airborne observation platforms in the upper atmosphere, as well as in laboratory environments. While specific to the production of Lyman-alpha, atomic chlorine, and atomic bromine emissions in this study, the configuration of the lamps and their interchangeability with respect to operation lend these procedures to constructing sources engaging a wide selection of atomic and molecular spectra with straightforward modifications. The features and limitations of each type of lamp are discussed, as well as methods to improve spectral purity and factors affecting operational lifetime.

2.
Proc Natl Acad Sci U S A ; 120(46): e2301994120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37903247

RESUMEN

The explosive eruption of the Hunga Tonga-Hunga Ha'apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022. Significant changes in stratospheric composition following the HTHH eruption are identified using observations from the Aura Microwave Limb Sounder satellite instrument. The dominant features in the monthly mean vertical profiles averaged over 15° latitude ranges are decreases in O3 (-14%) and HCl (-22%) at SH midlatitudes and increases in ClO (>100%) and HNO3 (43%) in the tropics, with peak pressure-level perturbations listed. Anomalies in column ozone from 1.2-100 hPa due to the HTHH eruption include widespread O3 reductions in SH midlatitudes and O3 increases in the tropics, with peak anomalies in 15° latitude-binned, monthly averages of approximately -7% and +5%, respectively, occurring in austral spring. Using a 3-dimensional chemistry-climate-aerosol model and observational tracer correlations, changes in stratospheric composition are found to be due to both dynamical and chemical factors.

3.
J Phys Chem A ; 127(34): 7284-7294, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37595126

RESUMEN

Chlorinated very short-lived substances (VSLSs), which are not controlled by the Montreal Protocol, are of current concern with regard to recovery of stratospheric ozone. Further study is needed on the temperature dependences of chlorinated VSLSs relevant to atmospheric conditions. Here, the kinetics of chlorinated VSLSs, such as chloroform (CHCl3), dichloromethane (CH2Cl2), dichloroethane (CH2ClCH2Cl), and trichloroethene (C2HCl3) reacting with chlorine atoms, were investigated between 180 and 400 K, expanding the range of temperatures relative to previous studies. RRKM/Master Equation and Canonical Variational Transition State Theory were utilized to calculate the rate coefficients using the MultiWell suite of programs. CCSD(T), QCISD(T), and M062X with aug-cc-pV(T+d)Z levels of theory were used to calculate the kinetic parameters. Arrhenius equations obtained from fits to the calculated rate coefficients are k1 = (2.66 ± 0.7) × 10-12 exp [(-927 ± 131)/T] cm3 molecule-1 s-1, k2 = (8.99 ± 0.3) × 10-12 exp [(-957 ± 19)/T] cm3 molecule-1 s-1, k3 = (1.51 ± 0.16) × 10-11 exp [(-714 ± 54)/T] cm3 molecule-1 s-1, and k4 = (9.17 ± 1.8) × 10-12 exp [(612 ± 101)/T] cm3 molecule-1 s-1 for the reactions of CHCl3, CH2Cl2, CH2ClCH2Cl, and C2HCl3 with Cl atoms, respectively. The rate coefficients for the reactions of chlorinated VSLSs with Cl atoms from this study are compared with the most recent recommended values from the NASA/JPL and IUPAC evaluations and with literature values. The reactivity trends of the reactions are discussed.

4.
Sci Rep ; 13(1): 6457, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081043

RESUMEN

We present a systematic evaluation of the perturbation to the stratosphere from an explosive volcanic eruption injecting sulfur dioxide into the atmosphere, as a function of latitude, season, and injection gas halogen content in a chemistry-climate state representative of the present day (modeled as year 2025). Enhancements in aerosol surface area density and decreases in stratospheric ozone are observed for a period of years following all modeled scenarios, with volcanic eruptions near the equator impacting both hemispheres relatively equally, and eruptions at higher latitudes reducing the thickness of the ozone layer more substantially in the hemisphere of the eruption. Our simulations reveal that there that are significant seasonal differences when comparing the stratospheric impact of a volcanic eruption occurring in summer versus winter, and this holds true regardless of whether volcanic halogen gases (Cl, Br) are co-injected with sulfur dioxide. If an explosive halogen-rich eruption were to occur, there would be substantial ozone losses in both hemispheres, regardless of latitude or season, with recovery potentially exceeding 4 years.

5.
Atmos Chem Phys ; 19(9): 6205-6215, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31632449

RESUMEN

The thermal equilibrium constant between the chlorine monoxide radical (ClO) and its dimer, chlorine peroxide (ClOOCl), was determined as a function of temperature between 228 and 301K in a discharge flow apparatus using broadband UV absorption spectroscopy. A third-law fit of the equilibrium values determined from the experimental data provides the expression K eq = 2.16 × 10-27 e (8527±35 K/T) cm3 molecule-1 (1σ uncertainty). A second-law analysis of the data is in good agreement. From the slope of the van't Hoff plot in the third-law analysis, the enthalpy of formation for ClOOCl is calculated, Δ H f ° (298 K) = 130.0 ± 0.6 kJ mol-1. The equilibrium constant results from this study suggest that the uncertainties in K eq recommended in the most recent (year 2015) NASA JPL Data Evaluation can be significantly reduced.

6.
J Quant Spectrosc Radiat Transf ; 234: 32-39, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31631911

RESUMEN

Accurate Rayleigh scattering cross sections are important for understanding the propagation of electromagnetic radiation in planetary atmospheres and for calibrating mirror reflectivity in high finesse optical cavities. In this study, we used Broadband Cavity Enhanced Spectroscopy (BBCES) to measure Rayleigh scattering cross sections for argon, carbon dioxide, sulfur hexafluoride, and methane between 333 and 363 nm, extending the region of available UV measurements for all four gases. Comparison of our results with refractive index based (n-based) calculations demonstrates excellent agreement for Ar and CO2, within 0.2% and 1.0% on average, respectively. For SF6, our mean Rayleigh scattering cross sections are lower by 2.2% on average relative to the n-based calculation and lie outside the 1-σ measurement uncertainty; however, the results still fall within our 2-σ uncertainty. The measured Rayleigh scattering cross sections for CH4 are in substantial disagreement (22%) with those calculated from the most recent n-based values in the literature and lie far outside our mean 1-σ uncertainty of 1.6%. Extrapolation of several older index of refraction measurements from visible wavelengths to the UV yields better agreement with our results for CH4, but the agreement is still generally outside our 1-σ measurement uncertainty. Use of the dispersion relation derived in this work provides significantly improved Rayleigh scattering cross sections for CH4 in the UV-A spectral region.

7.
Proc Natl Acad Sci U S A ; 114(25): E4905-E4913, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584119

RESUMEN

We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.

8.
Science ; 337(6096): 835-9, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22837384

RESUMEN

The observed presence of water vapor convectively injected deep into the stratosphere over the United States can fundamentally change the catalytic chlorine/bromine free-radical chemistry of the lower stratosphere by shifting total available inorganic chlorine into the catalytically active free-radical form, ClO. This chemical shift markedly affects total ozone loss rates and makes the catalytic system extraordinarily sensitive to convective injection into the mid-latitude lower stratosphere in summer. Were the intensity and frequency of convective injection to increase as a result of climate forcing by the continued addition of CO(2) and CH(4) to the atmosphere, increased risk of ozone loss and associated increases in ultraviolet dosage would follow.


Asunto(s)
Atmósfera/química , Convección , Ozono/química , Estaciones del Año , Vapor , Rayos Ultravioleta , Dióxido de Carbono/química , Catálisis , Compuestos de Cloro/química , Metano/química , Dosis de Radiación
9.
J Phys Chem A ; 113(51): 14099-108, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19852447

RESUMEN

Recent laboratory measurements of the absorption cross sections of the ClO dimer, ClOOCl, have called into question the validity of the mechanism that describes the catalytic removal of ozone by chlorine. Here we describe direct measurements of the rate-determining step of that mechanism, the production of Cl atoms from the photolysis of ClOOCl, under laboratory conditions similar to those in the stratosphere. ClOOCl is formed in a cold-temperature flowing system, with production initiated by a microwave discharge of Cl(2) or photolysis of CF(2)Cl(2). Excimer lasers operating at 248, 308, and 352 nm photodissociate ClOOCl, and the Cl atoms produced are detected with time-resolved atomic resonance fluorescence. Cl(2), the primary contaminant, is measured directly for the first time in a ClOOCl cross section experiment. We find the product of the quantum yield of the Cl atom production channel of ClOOCl photolysis and the ClOOCl absorption cross section, (phisigma)(ClOOCl) = 660 +/- 100 at 248 nm, 39.3 +/- 4.9 at 308 nm, and 8.6 +/- 1.2 at 352 nm (units of 10(-20) cm(2) molecule(-1)). The data set includes 468 total cross section measurements over a wide range of experimental conditions, significantly reducing the possibility of a systematic error impacting the results. These new measurements demonstrate that long-wavelength photons (lambda = 352 nm) are absorbed by ClOOCl directly, producing Cl atoms with a probability commensurate with the observed rate of ozone destruction in the atmosphere.


Asunto(s)
Atmósfera/química , Compuestos de Cloro/química , Cloro/química , Ozono/química , Peróxidos/química , Fotólisis , Algoritmos , Compuestos de Cloro/efectos de la radiación , Clorofluorocarburos de Metano/química , Cinética , Rayos Láser , Microondas , Modelos Químicos , Dióxido de Nitrógeno/química , Peróxidos/efectos de la radiación , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA