Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(3): e0011222, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36989319

RESUMEN

Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.


Asunto(s)
Aedes , Virus del Dengue , Wolbachia , Infección por el Virus Zika , Virus Zika , Animales , Virus del Dengue/fisiología , Wolbachia/genética , Mosquitos Vectores , Virus Zika/genética , Australia , Expresión Génica
2.
PLoS Negl Trop Dis ; 16(10): e0010786, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36227923

RESUMEN

Biological control of mosquito vectors using the endosymbiotic bacteria Wolbachia is an emerging strategy for the management of human arboviral diseases. We recently described the development of a strain of Aedes aegypti infected with the Wolbachia strain wAlbB (referred to as the wAlbB2-F4 strain) through simple backcrossing of wild type Australian mosquitoes with a wAlbB infected Ae. aegypti strain from the USA. Field releases of male wAlbB2-F4 mosquitoes resulted in the successful suppression of wild populations of mosquitoes in the trial sites by exploiting the strain's Wolbachia-induced cytoplasmic incompatibility. We now demonstrate that the strain is resistant to infection by dengue and Zika viruses and is genetically similar to endemic Queensland populations. There was a fourfold reduction in the proportion of wAlbB2-F4 mosquitoes that became infected following a blood meal containing dengue 2 virus (16.7%) compared to wild type mosquitoes (69.2%) and a 6-7 fold reduction in the proportion of wAlbB2-F4 mosquitoes producing virus in saliva following a blood meal containing an epidemic strain of Zika virus (8.7% in comparison to 58.3% in wild type mosquitoes). Restriction-site Associated DNA (RAD) sequencing revealed that wAlbB2-F4 mosquitoes have > 98% Australian ancestry, confirming the successful introduction of the wAlbB2 infection into the Australian genomic background through backcrossing. Genotypic and phenotypic analyses showed the wAlbB2-F4 strain retains the insecticide susceptible phenotype and genotype of native Australian mosquitoes. We demonstrate that the Wolbachia wAlbB2-F4, in addition to being suitable for population suppression programs, can also be effective in population replacement programs given its inhibition of virus infection in mosquitoes. The ease at which a target mosquito population can be transfected with wAlbB2, while retaining the genotypes and phenotypes of the target population, shows the utility of this strain for controlling the Ae. aegypti mosquitoes and the pathogens they transmit.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Insecticidas , Wolbachia , Infección por el Virus Zika , Virus Zika , Animales , Australia , ADN , Dengue/prevención & control , Virus del Dengue/fisiología , Humanos , Masculino , Mosquitos Vectores , Wolbachia/fisiología , Virus Zika/genética , Infección por el Virus Zika/prevención & control
3.
Open Biol ; 11(1): 200246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401993

RESUMEN

The principal vector of dengue, Zika and chikungunya viruses is the mosquito Aedes aegypti, with its ability to transmit pathogens influenced by ambient temperature. We use chikungunya virus (CHIKV) to understand how the mosquito transcriptome responds to arbovirus infection at different ambient temperatures. We exposed CHIKV-infected mosquitoes to 18, 28 and 32°C, and found that higher temperature correlated with higher virus levels, particularly at 3 days post infection, but lower temperature resulted in reduced virus levels. RNAseq analysis indicated significantly altered gene expression levels in CHIKV infection. The highest number of significantly differentially expressed genes was observed at 28°C, with a more muted effect at the other temperatures. At the higher temperature, the expression of many classical immune genes, including Dicer-2, was not substantially altered in response to CHIKV. The upregulation of Toll, IMD and JAK-STAT pathways was only observed at 28°C. Functional annotations suggested that genes in immune response and metabolic pathways related to energy supply and DNA replication were involved in temperature-dependent changes. Time post infection also led to substantially different gene expression profiles, and this varied with temperature. In conclusion, temperature significantly modulates mosquito gene expression in response to infection, potentially leading to impairment of immune defences at higher temperatures.


Asunto(s)
Aedes/metabolismo , Virus Chikungunya/fisiología , Inmunidad/genética , Mosquitos Vectores/inmunología , Aedes/virología , Animales , Regulación hacia Abajo , Ontología de Genes , Mosquitos Vectores/virología , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Temperatura , Regulación hacia Arriba
4.
Pathogens ; 8(3)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547257

RESUMEN

Aedes albopictus is an important vector of chikungunya virus (CHIKV). In Australia, Ae. albopictus is currently only known to be present on the islands of the Torres Strait but, should it invade the mainland, it is projected to spread to temperate regions. The ability of Australian Ae. albopictus to transmit CHIKV at the lower temperatures typical of temperate areas has not been assessed. Ae. albopictus mosquitoes were orally challenged with a CHIKV strain from either Asian or East/Central/South African (ECSA) genotypes (107 pfu/mL), and maintained at a constant temperature of either 18 °C or 28 °C. At 3- and 7-days post-infection (dpi), CHIKV RNA copies were quantified in mosquito bodies, and wings and legs using real time polymerase chain reaction (qRT-PCR), while the detection of virus in saliva (a proxy for transmission) was performed by amplification in cell culture followed by observation of cytopathic effect in Vero cells. Of the ≥95% of Ae. albopictus that survived to 7 dpi, all mosquitoes became infected and showed body dissemination of CHIKV at both temperatures and time points. Both the Asian and ECSA CHIKV genotypes were potentially transmissible by Australian Ae. albopictus at 28 °C within 3 days of oral challenge. In contrast, at 18 °C none of the mosquitoes showed evidence of ability to transmit either genotype of CHIKV at 3 dpi. Further, at 18 °C only Ae. albopictus infected with the ECSA genotype showed evidence of virus in saliva at 7 dpi. Overall, infection with the ECSA CHIKV genotype produced higher virus loads in mosquitoes compared to infection with the Asian CHIKV genotype. Our results suggest that lower ambient temperatures may impede transmission of some CHIKV strains by Ae. albopictus at early time points post infection.

5.
Emerg Microbes Infect ; 8(1): 70-79, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30866761

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes an acute febrile syndrome and severe, debilitating rheumatic disorders in humans that may persist for months. CHIKV's presence in Asia dates from at least 1954, but its epidemiological profile in the region remains poorly understood. We systematically reviewed CHIKV emergence, epidemiology, clinical features, atypical manifestations and distribution of virus genotypes, in 47 countries from South East Asia (SEA) and the Western Pacific Region (WPR) during the period 1954-2017. Following the Cochrane Collaboration guidelines, Pubmed and Scopus databases, surveillance reports available in the World Health Organisation (WHO) and government websites were systematically reviewed. Of the 3504 records identified, 461 were retained for data extraction. Although CHIKV has been circulating in Asia almost continuously since the 1950s, it has significantly expanded its geographic reach in the region from 2005 onwards. Most reports identified in the review originated from India. Although all ages and both sexes can be affected, younger children and the elderly are more prone to severe and occasionally fatal forms of the disease, with child fatalities recorded since 1963 from India. The most frequent clinical features identified were arthralgia, rash, fever and headache. Both the Asian and East-Central-South African (ECSA) genotypes circulate in SEA and WPR, with ECSA genotype now predominant. Our findings indicate a substantial but poorly documented burden of CHIKV infection in the Asia-Pacific region. An evidence-based consensus on typical clinical features of chikungunya could aid in enhanced diagnosis and improved surveillance of the disease.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Distribución por Edad , Asia Sudoriental/epidemiología , Fiebre Chikungunya/mortalidad , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Medicina Basada en la Evidencia , Femenino , Genotipo , Humanos , Masculino , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA