Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862555

RESUMEN

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Asunto(s)
Anopheles , Drosophila melanogaster , Tecnología de Genética Dirigida , Razón de Masculinidad , Espermatogénesis , Cromosoma X , Animales , Masculino , Femenino , Anopheles/genética , Cromosoma X/genética , Drosophila melanogaster/genética , Tecnología de Genética Dirigida/métodos , Espermatogénesis/genética , Mosquitos Vectores/genética , Genes Ligados a X , Sistemas CRISPR-Cas , Espermatozoides/metabolismo , Animales Modificados Genéticamente
2.
Malar J ; 23(1): 156, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773487

RESUMEN

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , Control de Mosquitos , Mosquitos Vectores , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Malaria/prevención & control , Malaria/transmisión , Animales , Anopheles/genética , Tecnología de Genética Dirigida/métodos
3.
Nat Commun ; 15(1): 372, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191463

RESUMEN

Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.


Asunto(s)
Ceratitis capitata , Tecnología de Genética Dirigida , Femenino , Masculino , Animales , Ceratitis capitata/genética , Agricultura , Alelos , Suministros de Energía Eléctrica
4.
Wellcome Open Res ; 8: 74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424773

RESUMEN

We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

6.
PLoS One ; 17(12): e0278484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454885

RESUMEN

Key behaviours, physiologies and gene expressions in Anopheles mosquitoes impact the transmission of Plasmodium. Such mosquito factors are rhythmic to closely follow diel rhythms. Here, we set to explore the impact of the mosquito circadian rhythm on the tripartite interaction between the vector, the parasite and the midgut microbiota, and investigate how this may affect the parasite infection outcomes. We assess Plasmodium falciparum infection prevalence and intensity, as a proxy for gametocyte infectivity, in Anopheles gambiae mosquitoes that received a gametocyte-containing bloodfeed and measure the abundance of the midgut microbiota at different times of the mosquito rearing light-dark cycle. Gametocyte infectivity is also compared in mosquitoes reared and maintained under a reversed light-dark regime. The effect of the circadian clock on the infection outcome is also investigated through silencing of the CLOCK gene that is central in the regulation of animal circadian rhythms. The results reveal that the A. gambiae circadian cycle plays a key role in the intensity of infection of P. falciparum gametocytes. We show that parasite gametocytes are more infectious during the night-time, where standard membrane feeding assays (SMFAs) at different time points in the mosquito natural circadian rhythm demonstrate that gametocytes are more infectious when ingested at midnight than midday. When mosquitoes were cultured under a reversed light/dark regime, disrupting their natural physiological homeostasis, and infected with P. falciparum at evening hours, the infection intensity and prevalence were significantly decreased. Similar results were obtained in mosquitoes reared under the standard light/dark regime upon silencing of CLOCK, a key regulator of the circadian rhythm, highlighting the importance of the circadian rhythm for the mosquito vectorial capacity. At that time, the mosquito midgut microbiota load is significantly reduced, while the expression of lysozyme C-1 (LYSC-1) is elevated, which is involved in both the immune response and microbiota digestion. We conclude that the tripartite interactions between the mosquito vector, the malaria parasite and the mosquito gut microbiota are finely tuned to support and maintain malaria transmission. Our data add to the knowledge framework required for designing appropriate and biologically relevant SMFA protocols.


Asunto(s)
Anopheles , Relojes Circadianos , Malaria Falciparum , Animales , Plasmodium falciparum , Relojes Circadianos/genética , Mosquitos Vectores
7.
Sci Adv ; 8(38): eabo1733, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129981

RESUMEN

Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.


Asunto(s)
Anopheles , Tecnología de Genética Dirigida , Malaria , Animales , Anopheles/genética , Femenino , Magaininas , Malaria/parasitología , Malaria/prevención & control , Meliteno , Mosquitos Vectores/genética , Plasmodium berghei/genética
8.
Malar J ; 21(1): 226, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883100

RESUMEN

BACKGROUND: Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa. METHODS: Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated. RESULTS: Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%. CONCLUSION: A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.


Asunto(s)
Culicidae , Tecnología de Genética Dirigida , Insecticidas , Malaria , Animales , Humanos , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Dinámica Poblacional , Estaciones del Año
9.
Front Bioeng Biotechnol ; 10: 857460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646834

RESUMEN

Gene drives are promising tools for the genetic control of insect vector or pest populations. CRISPR-based gene drives are generally highly complex synthetic constructs consisting of multiple transgenes and their respective regulatory elements. This complicates the generation of new gene drives and the testing of the behavior of their constituent functional modules. Here, we explored the minimal genetic components needed to constitute autonomous gene drives in Drosophila melanogaster. We first designed intronic gRNAs that can be located directly within coding transgene sequences and tested their functions in cell lines. We then integrated a Cas9 open reading frame hosting such an intronic gRNA within the Drosophila rcd-1r locus that drives the expression in the male and female germlines. We showed that upon removal of the fluorescent transformation marker, the rcd-1r d allele supports efficient gene drive. We assessed the propensity of this driver, designed to be neutral with regards to fitness and host gene function, to propagate in caged fly populations. Because of their simplicity, such integral gene drives could enable the modularization of drive and effector functions. We also discussed the possible biosafety implications of minimal and possibly recoded gene drives.

10.
PLoS Genet ; 18(6): e1010244, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653396

RESUMEN

Gene drives for mosquito population modification are novel tools for malaria control. Strategies to safely test antimalarial effectors in the field are required. Here, we modified the Anopheles gambiae zpg locus to host a CRISPR/Cas9 integral gene drive allele (zpgD) and characterized its behaviour and resistance profile. We found that zpgD dominantly sterilizes females but can induce efficient drive at other loci when it itself encounters resistance. We combined zpgD with multiple previously characterized non-autonomous payload drives and found that, as zpgD self-eliminates, it leads to conversion of mosquito cage populations at these loci. Our results demonstrate how self-eliminating drivers could allow safe testing of non-autonomous effector-traits by local population modification. They also suggest that after engendering resistance, gene drives intended for population suppression could nevertheless serve to propagate subsequently released non-autonomous payload genes, allowing modification of vector populations initially targeted for suppression.


Asunto(s)
Anopheles , Antimaláricos , Tecnología de Genética Dirigida , Malaria , Animales , Anopheles/genética , Femenino , Tecnología de Genética Dirigida/métodos , Malaria/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética
11.
BMC Biol ; 19(1): 78, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863334

RESUMEN

BACKGROUND: Genetic sex ratio distorters are systems aimed at effecting a bias in the reproductive sex ratio of a population and could be applied for the area-wide control of sexually reproducing insects that vector disease or disrupt agricultural production. One example of such a system leading to male bias is X-shredding, an approach that interferes with the transmission of the X-chromosome by inducing multiple DNA double-strand breaks during male meiosis. Endonucleases targeting the X-chromosome and whose activity is restricted to male gametogenesis have recently been pioneered as a means to engineer such traits. RESULTS: Here, we enabled endogenous CRISPR/Cas9 and CRISPR/Cas12a activity during spermatogenesis of the Mediterranean fruit fly Ceratitis capitata, a worldwide agricultural pest of extensive economic significance. In the absence of a chromosome-level assembly, we analysed long- and short-read genome sequencing data from males and females to identify two clusters of abundant and X-chromosome-specific sequence repeats. When targeted by gRNAs in conjunction with Cas9, cleavage of these repeats yielded a significant and consistent distortion of the sex ratio towards males in independent transgenic strains, while the combination of distinct distorters induced a strong bias (~ 80%). CONCLUSION: We provide a first demonstration of CRISPR-based sex distortion towards male bias in a non-model organism, the global pest insect Ceratitis capitata. Although the sex ratio bias reached in our study would require improvement, possibly through the generation and combination of additional transgenic lines, to result in a system with realistic applicability in the field, our results suggest that strains with characteristics suitable for field application can now be developed for a range of medically or agriculturally relevant insect species.


Asunto(s)
Ceratitis capitata , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Ceratitis capitata/genética , Femenino , Masculino , ARN Guía de Kinetoplastida , Razón de Masculinidad , Cromosoma X/genética
12.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33845943

RESUMEN

Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.


Asunto(s)
Anopheles/genética , Control de Enfermedades Transmisibles/métodos , Tecnología de Genética Dirigida/métodos , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Animales
13.
Sci Rep ; 11(1): 3090, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542254

RESUMEN

Malaria parasites develop as oocysts in the mosquito for several days before they are able to infect a human host. During this time, mosquitoes take bloodmeals to replenish their nutrient and energy reserves needed for flight and reproduction. We hypothesized that these bloodmeals are critical for oocyst growth and that experimental infection protocols, typically involving a single bloodmeal at the time of infection, cause nutritional stress to the developing oocysts. Therefore, enumerating oocysts disregarding their growth and differentiation state may lead to erroneous conclusions about the efficacy of transmission blocking interventions. Here, we examine this hypothesis in Anopheles coluzzii mosquitoes infected with the human and rodent parasites Plasmodium falciparum and Plasmodium berghei, respectively. We show that oocyst growth and maturation rates decrease at late developmental stages as infection intensities increase; an effect exacerbated at very high infection intensities but fully restored with post infection bloodmeals. High infection intensities and starvation conditions reduce RNA Polymerase III activity in oocysts unless supplemental bloodmeals are provided. Our results suggest that oocysts respond to crowding and nutritional stress with a dormancy-like strategy, which urges the development of alternative methods to assess the efficacy of transmission blocking interventions.


Asunto(s)
Malaria Falciparum/metabolismo , Oocistos/metabolismo , Plasmodium falciparum/metabolismo , Esporozoítos/metabolismo , Animales , Anopheles/parasitología , Humanos , Pruebas Inmunológicas , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Oocistos/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Esporozoítos/patogenicidad
14.
J Evol Biol ; 33(10): 1345-1360, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32969551

RESUMEN

Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.


Asunto(s)
Evolución Biológica , Tecnología de Genética Dirigida , Selección Genética
15.
PLoS Comput Biol ; 16(8): e1008121, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32797077

RESUMEN

Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida/métodos , Resistencia a los Insecticidas/genética , Malaria , Mosquitos Vectores/genética , Animales , Aptitud Genética , Humanos , Malaria/prevención & control , Malaria/transmisión , Análisis de Sistemas
16.
Nature ; 580(7802): 263-268, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269334

RESUMEN

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/fisiología , Intestinos/fisiología , Zinc/metabolismo , Animales , Drosophila melanogaster/genética , Enterocitos/metabolismo , Femenino , Preferencias Alimentarias , Homeostasis , Insectos Vectores , Insulina/metabolismo , Activación del Canal Iónico , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Lisosomas/metabolismo , Masculino , Oocitos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Xenopus
17.
PLoS Genet ; 16(3): e1008647, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32168334

RESUMEN

Synthetic sex distorters have recently been developed in the malaria mosquito, relying on endonucleases that target the X-chromosome during spermatogenesis. Although inspired by naturally-occurring traits, it has remained unclear how they function and, given their potential for genetic control, how portable this strategy is across species. We established Drosophila models for two distinct mechanisms for CRISPR/Cas9 sex-ratio distortion-"X-shredding" and "X-poisoning"-and dissected their target-site requirements and repair dynamics. X-shredding resulted in sex distortion when Cas9 endonuclease activity occurred during the meiotic stages of spermatogenesis but not when Cas9 was expressed from the stem cell stages onwards. Our results suggest that X-shredding is counteracted by the NHEJ DNA repair pathway and can operate on a single repeat cluster of non-essential sequences, although the targeting of a number of such repeats had no effect on the sex ratio. X-poisoning by contrast, i.e. targeting putative haplolethal genes on the X chromosome, induced a high bias towards males (>92%) when we directed Cas9 cleavage to the X-linked ribosomal target gene RpS6. In the case of X-poisoning sex distortion was coupled to a loss in reproductive output, although a dominant-negative effect appeared to drive the mechanism of female lethality. These model systems will guide the study and the application of sex distorters to medically or agriculturally important insect target species.


Asunto(s)
Edición Génica/métodos , Procesos de Determinación del Sexo/genética , Preselección del Sexo/métodos , Animales , Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endonucleasas/genética , Femenino , Masculino , Modelos Animales , Control Biológico de Vectores/métodos , Razón de Masculinidad , Espermatogénesis/genética , Cromosoma X/genética
18.
PLoS Pathog ; 15(11): e1008063, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697788

RESUMEN

Mating causes dramatic changes in female physiology, behaviour, and immunity in many insects, inducing oogenesis, oviposition, and refractoriness to further mating. Females from the Anopheles gambiae species complex typically mate only once in their lifetime during which they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid hormone 20-hydroxyecdysone. This hormone, which is also induced by blood-feeding, plays a major role in activating vitellogenesis for egg production. Here we show that female Anopheles coluzzii susceptibility to Plasmodium falciparum infection is significantly higher in mated females compared to virgins. We also find that mating status has a major impact on the midgut transcriptome, detectable only under sugar-fed conditions: once females have blood-fed, the transcriptional changes that are induced by mating are likely masked by the widespread effects of blood-feeding on gene expression. To determine whether increased susceptibility to parasites could be driven by the additional 20E that mated females receive from males, we mimicked mating by injecting virgin females with 20E, finding that these females are significantly more susceptible to human malaria parasites than virgin females injected with the control 20E carrier. Further RNAseq was carried out to examine whether the genes that change upon 20E injection in the midgut are similar to those that change upon mating. We find that 79 midgut-expressed genes are regulated in common by both mating and 20E, and 96% (n = 76) of these are regulated in the same direction (up vs down in 20E/mated). Together, these findings show that male Anopheles mosquitoes induce changes in the female midgut that can affect female susceptibility to P. falciparum. This implies that in nature, males might contribute to malaria transmission in previously unappreciated ways, and that vector control strategies that target males may have additional benefits towards reducing transmission.


Asunto(s)
Anopheles/fisiología , Sistema Digestivo/fisiopatología , Malaria/transmisión , Mosquitos Vectores/patogenicidad , Conducta Sexual Animal/fisiología , Transcriptoma , Animales , Sistema Digestivo/metabolismo , Sistema Digestivo/parasitología , Susceptibilidad a Enfermedades , Femenino , Humanos , Hormonas de Insectos/metabolismo , Malaria/parasitología , Masculino , Oviposición , Reproducción
20.
Science ; 365(6460): 1457-1460, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31467189

RESUMEN

In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.


Asunto(s)
Ceratitis capitata/genética , Genes Ligados a Y , Procesos de Determinación del Sexo , Cromosoma Y/genética , Animales , Secuencia Conservada , Embrión no Mamífero , Femenino , Genes de Insecto , Masculino , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA