Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39012897

RESUMEN

Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.

2.
ACS Appl Mater Interfaces ; 16(25): 32209-32219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863333

RESUMEN

Solid-state polymer electrolytes (SPEs), such as poly(ethylene oxide) (PEO), have good flexibility when compared to ceramic-type solid electrolytes. Therefore, it could be an ideal solid electrolyte for zero-excess all-solid-state Li metal battery (ZESSLB), also known as anode-free all-solid-state Li battery, development by offering better contact to the Cu current collector. However, the low Coulombic efficiencies observed from polymer type solid-state Li batteries (SSLBs) raise the concern that PEO may consume the limited amount of Li in ZESSLB to fail the system. Here, we designed ZESSLBs by using all-ceramic half-cells and an extra PEO electrolyte interlayer to study the reactivity between PEO and freshly deposited Li under a real battery operating conduction. By shuttling active Li back from the anode to the cathode, the PEO SPEs can be separated from the ZESSLBs for experimental studies without the influence from cathode materials or possible contamination from the usage of Li foil as the anode. Electrochemical cycling of ZESSLBs shows that the capacities of ZESSLBs with solvent-free and solvent-casted PEO SPEs significantly degraded compared to the ones with Li metal as the anode for the all-solid-state Li batteries. The fast capacity degradation of ZESSLBs using different types of PEO SPEs is evidenced to be associated with Li reacting with PEO, residual solvent, and water in PEO and dead Li formation upon the presence or absence of residual solvent. The results suggest that avoiding direct contact between the PEO electrolyte and deposited lithium is necessary when there is only a limited amount of Li available in ZESSLBs.

3.
ACS Nano ; 18(27): 17924-17938, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937963

RESUMEN

The up-to-date lifespan of zero-excess lithium (Li) metal batteries is limited to a few dozen cycles due to irreversible Li-ion loss caused by interfacial reactions during cycling. Herein, a chemical prelithiated composite interlayer, made of lithiophilic silver (Ag) and lithiophobic copper (Cu) in a 3D porous carbon fiber matrix, is applied on a planar Cu current collector to regulate Li plating and stripping and prevent undesired reactions. The Li-rich surface coating of lithium oxide (Li2O), lithium carboxylate (RCO2Li), lithium carbonates (ROCO2Li), and lithium hydride (LiH) is formed by soaking and directly heating the interlayer in n-butyllithium hexane solution. Although only a thin coating of ∼10 nm is created, it effectively regulates the ionic and electronic conductivity of the interlayer via these surface compounds and reduces defect sites by reactions of n-butyllithium with heteroatoms in the carbon fibers during formation. The spontaneously formed lithiophilic-lithiophobic gradient across individual carbon fiber provides homogeneous Li-ion deposition, preventing concentrated Li deposition. The porous structure of the composite interlayer eliminates the built-in stress upon Li deposition, and the anisotropically distributed carbon fibers enable uniform charge compensation. These features synergistically minimize the side reactions and compensate for Li-ion loss while cycling. The prepared zero-excess Li metal batteries could be cycled 300 times at 1.17 C with negligible capacity fading.

4.
ACS Appl Mater Interfaces ; 15(29): 34973-34982, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37442800

RESUMEN

Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10-3 S cm-1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the 'Vitrification zone' where the precursors undergo homogenization and amorphization, 'Intermediary zone' where Li3PS4 and Li4GeS4 are formed, and the 'Product stage' where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10-3 S cm-1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10-3 S cm-1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.

5.
Small ; 19(28): e2300850, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36974581

RESUMEN

The structural and morphological changes of the Lithium superionic conductor Li10 GeP2 S12 , prepared via a widely used ball milling-heating method over a comprehensive heat treatment range (50 - 700 °C), are investigated. Based on the phase composition, the formation process can be distinctly separated into four zones: Educt, Intermediary, Formation, and Decomposition zone. It is found that instead of Li4 GeS4 -Li3 PS4 binary crystallization process, diversified intermediate phases, including GeS2 in different space groups, multiphasic lithium phosphosulfides (Lix Py Sz ), and cubic Li7 Ge3 PS12 phase, are involved additionally during the formation and decomposition of Li10 GeP2 S12 . Furthermore, the phase composition at temperatures around the transition temperatures of different formation zones shows a significant deviation. At 600 °C, Li10 GeP2 S12 is fully crystalline, while the sample decomposed to complex phases at 650 °C with 30 wt.% impurities, including 20 wt.% amorphous phases. These findings over such a wide temperature range are first reported and may help provide previously lacking insights into the formation and crystallinity control of Li10 GeP2 S12 .

6.
Small ; 18(21): e2200266, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35475572

RESUMEN

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO4 (LFP) and Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li3- x Fe2- x - y Tix Aly (PO4 )3 (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm-2 (36 µA cm-2 , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li+ kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

7.
ACS Appl Mater Interfaces ; 13(51): 61067-61077, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34910464

RESUMEN

The fast Li+ transportation of "polymer-in-ceramic" electrolytes is highly dependent on the long-range Li+ migration pathways, which are determined by the structure and chemistry of the electrolytes. Besides, Li dendrite growth may be promoted in the soft polymer region due to the inhomogeneous electric field caused by the commonly low Li+ transference number of the polymer. Herein, a single-ion-conducting polymer electrolyte is infiltrated into intertwined Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanofibers to construct free-standing electrolyte membranes. The composite electrolyte possesses a large electrochemical window exceeding 5 V, a high ionic conductivity of 0.31 mS cm-1 at ambient temperature, and an extraordinary Li+ transference number of 0.94. The hybrid electrolyte in the lithium symmetric cell shows stable Li plating/stripping up to 2000 h under 0.1 mA cm-2 without dendrite formation. The Li|hybrid electrolyte|LiFePO4 battery exhibits enhanced rate capability up to 1 C and a stable cycling performance with an initial discharge capacity of 131.8 mA h g-1 and a retention capacity of 122.7 mA h g-1 after 500 cycles at 0.5 C at ambient temperature. The improved electrochemical performance is attributed to the synergistic effects of the LATP nanofibers and the single-ion-conducting polymer. The fibrous fast ion conductors provide continuous ion transport channels, and the polymer improves the interfacial contact with the electrodes and helps to suppress the Li dendrites.

8.
ACS Appl Mater Interfaces ; 8(40): 26842-26850, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27642769

RESUMEN

The reactivity of mixtures of high voltage spinel cathode materials Li2NiMn3O8, Li2FeMn3O8, and LiCoMnO4 cosintered with Li1.5Al0.5Ti1.5(PO4)3 and Li6.6La3Zr1.6Ta0.4O12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li6.6La3Zr1.6Ta0.4O12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li2MnO3 and then decompose to form stable and often insulating phases such as La2Zr2O7, La2O3, La3TaO7, TiO2, and LaMnO3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li1.5Al0.5Ti1.5(PO4)3 mixtures, the Mn tends to oxidize to MnO2 or Mn2O3, supplying lithium to the electrolyte for the formation of Li3PO4 and metal phosphates such as AlPO4 and LiMPO4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA