Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cereb Blood Flow Metab ; 30(5): 935-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20010956

RESUMEN

17beta-Estradiol (E(2)) was shown to exert neuroprotective effects both in in vitro and in vivo models of stroke. Although these effects of E(2) are known to require estrogen receptor-alpha (ER alpha), the cellular target of estrogen-mediated neuroprotection remains unknown. Using cell type-specific ER mutant mice in an in vivo model of stroke, we specifically investigated the role of ER alpha in neuronal cells versus its role in the microglia in the mediation of neuroprotection by estrogens. We generated and analyzed two different tissue-specific knockout mouse lines lacking ER alpha either in cells of myeloid lineage, including microglia, or in the neurons of the forebrain. Both E(2)-treated and E(2)-untreated mutant and control mice were subjected to a permanent middle cerebral artery occlusion for 48 h, and the infarct volume was quantified. Although the infarct volume of E(2)-treated female myeloid-specific ER alpha knockout mice was similar to that of E(2)-treated control mice, both male and female neuron-specific ER alpha mutant mice had larger infarcts than did control mice after E(2) treatment. We conclude that neuronal ER alpha in female and male mice mediates neuroprotective estrogen effects in an in vivo mouse model of stroke, whereas microglial ER alpha is dispensable.


Asunto(s)
Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Femenino , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/metabolismo , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Ovariectomía , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
2.
Mol Endocrinol ; 23(10): 1544-55, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19574448

RESUMEN

The majority of the biological effects of estrogens in the reproductive tract are mediated by estrogen receptor (ER)alpha, which regulates transcription by several mechanisms. Because the tissue-specific effects of some ERalpha ligands may be caused by tissue-specific transcriptional mechanisms of ERalpha, we aimed to identify the contribution of DNA recognition to these mechanisms in two clinically important target organs, namely uterus and liver. We used a genetic mouse model that dissects DNA binding-dependent vs. independent transcriptional regulation elicited by ERalpha. The EAAE mutant harbors amino acid exchanges at four positions of the DNA-binding domain (DBD) of ERalpha. This construct was knocked in the ERalpha gene locus to produce ERalpha((EAAE/EAAE)) mice devoid of a functional ERalpha DBD. The phenotype of the ERalpha((EAAE/EAAE)) mice resembles the general loss-of-function phenotype of alphaER knockout mutant mice with hypoplastic uteri, hemorrhagic ovaries, and impaired mammary gland development. In agreement with this phenotype, the expression pattern of the ERalpha((EAAE/EAAE)) mutant mice in liver obtained by genome-wide gene expression profiling supports the observation of a near-complete loss of estrogen-dependent gene regulation in comparison with the wild type. Further gene expression analyses to validate the results of the microarray data were performed by quantitative RT-PCR. The analyses indicate that both gene activation and repression by estrogen-bound ERalpha rely on an intact DBD in vivo.


Asunto(s)
ADN/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Hígado/metabolismo , Transcripción Genética/efectos de los fármacos , Útero/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con la Autofagia , Receptor alfa de Estrógeno/química , Etinilestradiol/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Infertilidad Femenina/genética , Interleucina-1beta/farmacología , Hígado/efectos de los fármacos , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteínas Represoras/metabolismo , Elementos de Respuesta/genética , Útero/efectos de los fármacos
3.
Curr Opin Pharmacol ; 7(2): 130-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17317318

RESUMEN

Estrogen combines beneficial and harmful actions by affecting many intracellular pathways in a large number of target organs related to the cardiovascular system. In observational studies and large outcome trials, an improvement of serum lipid profile and reduction of cardiovascular event rate were reported, whereas thrombembolic complications and stroke rate increased. Recognition of the diversity and tissue selectivity of estrogen's effects prompted the development of selective estrogen receptor modulators (SERMs), which were subsequently used to dissect the different mechanisms of action. SERMs are estrogen receptor (ER) ligands that exert partial agonist or antagonist actions on the ER in a tissue-, pathway- or isoform-specific manner. As ER ligands, they trigger a large variety of effects, including extranuclear ER actions, which can be further modulated by coactivators, corepressors and potential novel estrogen-binding proteins/receptors. Thus, SERMs can display tissue- or pathway-specific effects, or a combination of these. Pharmacological and clinical data are available for the classical SERM prototypes raloxifene and tamoxifene, as well as for new SERMs in different stages of development, isotype-specific agonists and pathway-selective ligands. These compounds exert many different effects, including vasodilatation in coronary arteries, altered responses to ischemic damage, hypertrophy of the myocardium, and improvement in serum cholesterol and lipid profile. The development of future SERMs will focus on different indications, including hormone therapy or cardiovascular disease. However, they all should antagonize estrogen action in female reproductive organs, yet protect from bone loss and not interfere with the beneficial effects of estrogen in the brain.


Asunto(s)
Enfermedad Coronaria/tratamiento farmacológico , Estrógenos/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Animales , Enfermedad Coronaria/fisiopatología , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Drogas en Investigación , Estrógenos/efectos adversos , Femenino , Humanos , Receptores de Estrógenos/fisiología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal
4.
EMBO J ; 25(24): 5805-15, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17139252

RESUMEN

Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution.


Asunto(s)
Apoptosis , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Animales , Activación Enzimática , Células Epiteliales/citología , Femenino , Eliminación de Gen , Marcación de Gen , Integrasas/metabolismo , Lactancia/fisiología , Factor Inhibidor de Leucemia/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
5.
Neuron ; 52(2): 271-80, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17046690

RESUMEN

The mechanisms through which estrogen regulates gonadotropin-releasing hormone (GnRH) neurons to control mammalian ovulation are unknown. We found that estrogen positive feedback to generate the preovulatory gonadotropin surge was normal in estrogen receptor beta knockout (ERbeta) mutant mice, but absent in ERalpha mutant mice. An ERalpha-selective compound was sufficient to generate positive feedback in wild-type mice. As GnRH neurons do not express ERalpha, estrogen positive feedback upon GnRH neurons must be indirect in nature. To establish the cell type responsible, we generated a neuron-specific ERalpha mutant mouse line. These mice failed to exhibit estrogen positive feedback, demonstrating that neurons expressing ERalpha are critical. We then used a GnRH neuron-specific Pseudorabies virus (PRV) tracing approach to show that the ERalpha-expressing neurons innervating GnRH neurons are located within rostral periventricular regions of the hypothalamus. These studies demonstrate that ovulation is driven by estrogen actions upon ERalpha-expressing neuronal afferents to GnRH neurons.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Retroalimentación Fisiológica/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Animales , Congéneres del Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/agonistas , Ciclo Estral/efectos de los fármacos , Ciclo Estral/fisiología , Femenino , Fertilidad/fisiología , Herpesvirus Suido 1/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Hipotálamo Medio/efectos de los fármacos , Hipotálamo Medio/metabolismo , Hormona Luteinizante/metabolismo , Ratones , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos
6.
J Steroid Biochem Mol Biol ; 93(2-5): 107-12, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15860252

RESUMEN

Corticosteroid hormones regulate a variety of developmental, physiological and pathological processes via their cognate receptors, the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Using modern genetic technologies, including bacterial artificial chromosome-based transgenesis and conditional gene targeting, we have generated a panel of tissue-specific and function-selective mutations of the two corticosteroid hormone receptors in the mouse. These mouse models have allowed us to gain new insights into corticosteroid hormone signaling in vivo. By investigating a hepatocyte-specific GR mutation, it has been possible to define a novel biological action of GR, namely to function as a coactivator for Stat5-mediated gene transcription in the control of body growth. The investigation of brain-specific mutations have not only allowed us to better understand hypothalamo-pituitary-adrenal (HPA) axis regulation by glucocorticoids, but also to analyse corticosteroid action in various aspects of brain function like anxiety-related or addiction-related behaviour, and learning and memory. A function-selective mutation in the GR has allowed us to dissect different pathways in the gene expression regulation by this receptor, namely to separate DNA response element-binding dependent gene activation from response element-independent gene regulation via interference with other transcription factors. These different transcriptional activities of GR play an important role in glucocorticoid-mediated immunosuppression.


Asunto(s)
Marcación de Gen/métodos , Receptores de Esteroides/genética , Receptores de Esteroides/fisiología , Alelos , Animales , Encéfalo/metabolismo , Cromosomas Artificiales Bacterianos/genética , Cognición/fisiología , Retroalimentación , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Inmunológico/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Antagonistas de Receptores de Mineralocorticoides , Mutagénesis , Sistema Hipófiso-Suprarrenal/fisiología , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Receptores de Mineralocorticoides/deficiencia , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/fisiología , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/deficiencia
7.
Mol Endocrinol ; 19(2): 340-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15471946

RESUMEN

Glucocorticoids have been shown to influence mammary gland function in vivo and to stimulate milk protein gene expression in vitro. Here, we describe the generation and analysis of a mouse model to study glucocorticoid receptor (GR, NR3C1) function in mammary epithelial cells. Using the Cre-loxP system, mutant mice were obtained in which the GR gene is specifically deleted in epithelial cells during lobuloalveolar development, leading to a complete loss of epithelial GR at the onset of lactation. Mice harboring the mammary-epithelial-specific GR mutation are able to nurse their litters until weaning. During pregnancy, however, GR deficiency delays lobuloalveolar development, leading to an incomplete epithelial penetration of the mammary fat pad that persists throughout lactation. We identified a reduced cell proliferation during lobuloalveolar development as reason for this delay. This reduction is compensated for by increased epithelial proliferation after parturition in the mutant glands. During lactation, GR-deficient mammary epithelium is capable of milk production and secretion. The expression of two milk proteins, namely whey acidic protein and beta-casein, during lactation was not critically affected in the absence of GR. We conclude that GR function is not essential for alveolar differentiation and milk production, but influences cell proliferation during lobuloalveolar development.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Receptores de Glucocorticoides/fisiología , Alelos , Animales , Northern Blotting , Southern Blotting , Bromodesoxiuridina/farmacología , Caseínas/metabolismo , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Inmunohistoquímica , Cinética , Lactancia , Ratones , Ratones Mutantes , Ratones Transgénicos , Leche/metabolismo , Proteínas de la Leche/metabolismo , Mutación , Mutación Puntual , ARN/metabolismo , Receptores de Glucocorticoides/metabolismo , Recombinación Genética , Transducción de Señal
8.
Genesis ; 33(3): 125-30, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12124945

RESUMEN

We describe the generation of transgenic mouse lines expressing Cre recombinase in epithelial cells of the lactating mammary gland. As an expression vector, we used a P1-derived bacterial artificial chromosome (PAC) which harbors the gene for the secretory milk protein, whey acidic protein (Wap). Using homologous recombination in E. coli, the PAC was modified to carry the improved coding sequence of Cre recombinase (iCre). Transgenic lines carrying the WAPiCre PAC express Cre recombinase efficiently in the majority of mammary epithelial cells upon lactation. Of only four transgenic lines produced, three express Cre recombinase to a high efficiency. LoxP-flanked DNA sequences are recombined in virtually all epithelial cells of WAPiCre transgenic mice at lactation day 3.


Asunto(s)
Mama/citología , Mama/metabolismo , Cromosomas Artificiales Bacterianos/genética , Células Epiteliales/metabolismo , Marcación de Gen/métodos , Animales , Línea Celular , Expresión Génica , Vectores Genéticos/genética , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Proteínas de la Leche/genética , Especificidad de Órganos , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA