Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
iScience ; 27(7): 110284, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39040072

RESUMEN

Brain metastases are the most common brain tumors in patients and are associated with poor prognosis. Investigating the colonization and outgrowth of brain metastases is challenging given the complexity of the organ, tissue sampling difficulty, and limited experimental models. To address this challenge, we employed a strategy to analyze the metastatic niche in established lesions, based on the release of a cell-penetrating mCherry tag from labeled tumor cells to neighboring niche cells, using different brain metastasis mouse models. We found that CD206+ macrophages were the most abundant cells taking up the mCherry label in established metastases. In vitro and in vivo experiments demonstrated that macrophages uptake and retain the canonical form of mCherry, even without the cell-penetrating portion of the tag. These results identify a specific macrophage subset in the brain that retains tumor-supplied fluorescent molecules, thereby complicating the long-term use of niche labeling strategies in established experimental brain metastasis.

2.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894438

RESUMEN

Melanoma frequently metastasises to the brain, and a detailed understanding of the molecular and cellular mechanisms underlying melanoma cell extravasation across the blood-brain barrier (BBB) is important for preventing brain metastasis formation. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as an in vitro BBB model, we imaged the interaction of melanoma cells into pMBMEC monolayers. We observed exclusive junctional intercalation of melanoma cells and confirmed that melanoma-induced pMBMEC barrier disruption can be rescued by protease inhibition. Interleukin (IL)-1ß stimulated pMBMECs or PECAM-1-knockout (-ko) pMBMECs were employed to model compromised BBB barrier properties in vitro and to determine increased melanoma cell intercalation compared to pMBMECs with intact junctions. The newly generated brain-homing melanoma cell line YUMM1.1-BrM4 was used to reveal increased in vivo extravasation of melanoma cells across the BBB of barrier-compromised PECAM-1-deficient mice compared to controls. Taken together, our data indicate that preserving BBB integrity is an important measure to limit the formation of melanoma-brain metastasis.

3.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769657

RESUMEN

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

4.
Nat Cancer ; 4(6): 908-924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217652

RESUMEN

The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39+ potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T , Humanos , Multiómica , Neoplasias Encefálicas/secundario , Encéfalo , Inmunoterapia
5.
Sci Transl Med ; 14(667): eabo2952, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36260692

RESUMEN

High-grade gliomas, the most common and aggressive primary brain tumors, are characterized by a complex tumor microenvironment (TME). Among the immune cells infiltrating the glioma TME, tumor-associated microglia and macrophages (TAMs) constitute the major compartment. In patients with gliomas, increased TAM abundance is associated with more aggressive disease. Alterations in TAM phenotypes and functions have been reported in preclinical models of multiple cancers during tumor development and after therapeutic interventions, including radiotherapy and molecular targeted therapies. These findings indicate that it is crucial to evaluate TAM abundance and dynamics over time. Current techniques to quantify TAMs in patients rely mainly on histological staining of tumor biopsies. Although informative, these techniques require an invasive procedure to harvest the tissue sample and typically only result in a snapshot of a small region at a single point in time. Fluorine isotope 19 MRI (19F MRI) represents a powerful means to noninvasively and longitudinally monitor myeloid cells in pathological conditions by intravenously injecting perfluorocarbon-containing nanoparticles (PFC-NP). In this study, we demonstrated the feasibility and power of 19F MRI in preclinical models of gliomagenesis, breast-to-brain metastasis, and breast cancer and showed that the major cellular source of 19F signal consists of TAMs. Moreover, multispectral 19F MRI with two different PFC-NP allowed us to identify spatially and temporally distinct TAM niches in radiotherapy-recurrent murine gliomas. Together, we have imaged TAMs noninvasively and longitudinally with integrated cellular, spatial, and temporal resolution, thus revealing important biological insights into the critical functions of TAMs, including in disease recurrence.


Asunto(s)
Fluorocarburos , Glioma , Miopatías Estructurales Congénitas , Animales , Ratones , Macrófagos Asociados a Tumores , Flúor , Recurrencia Local de Neoplasia , Tamoxifeno , Glioma/diagnóstico por imagen , Microambiente Tumoral , Melanoma Cutáneo Maligno
6.
Mol Cancer ; 14: 39, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25744631

RESUMEN

BACKGROUND: Normal epithelial cells and carcinoma cells can acquire invasiveness by epithelial-to-mesenchymal transition (EMT), a process of considerable cellular remodeling. The endosomal/lysosomal compartment is a principal site of intracellular protein degradation. Lysosomal cathepsin proteases are secreted during cancer progression. The established pro-metastatic role of specific cysteine cathepsins has until now been ascribed to their contribution to extracellular matrix remodeling. We hypothesized that cysteine cathepsins affect transforming growth factor ß-1 (TGFß-1)-induced EMT of normal and malignant mammary epithelial cells. METHODS: The role of lysosomal proteolysis in TGFß-1-induced EMT and invasion was investigated in a normal and a novel malignant murine mammary epithelial cell line. The contribution of cysteine cathepsins was determined by addition of the general cysteine cathepsin inhibitor E64d. Hallmarks of EMT were analyzed by molecular- and cell-biologic analyses including real-time cell migration/invasion assays. A quantitative proteome comparison using stable isotopic labeling with amino acids in culture (SILAC) showed the effect of E64d on TGFß-1 induced proteome changes. Lysosomal patterning and junctional adhesion molecule A (Jam-a) localization and abundance were analyzed by immunofluorescence. RESULTS: We found increased lysosome activity during EMT of malignant mammary epithelial cells. Cysteine cathepsin inhibition had no effect on the induction of the TGFß-1-induced EMT program on transcriptional level. Protease inhibition did not affect invasion of TGFß-1 treated normal mammary epithelial cells, but reduced the invasion of murine breast cancer cells. Remarkably, reduced invasion was also evident if E64d was removed 24 h before the invasion assay in order to allow for recovery of cathepsin activity. Proteome analyses revealed a high abundance of lysosomal enzymes and lysosome-associated proteins in cancer cells treated with TGFß-1 and E64d. An accumulation of those proteins and of lysosomal vesicles was further confirmed by independent methods. Interestingly, E64d caused lysosomal accumulation of Jam-a, a tight junction component facilitating epithelial cell-cell adhesion. CONCLUSION: Our results demonstrate an important role of lysosomal proteolysis in cellular remodeling during EMT and a pivotal contribution of lysosomal cysteine cathepsins to TGFß-1 induced acquisition of breast cancer cell invasiveness. These findings provide an additional rationale to use cathepsin inhibitors to stall tumor metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Neoplasias de la Mama/patología , Catepsinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Femenino , Ratones , Proteolisis , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA