Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 14(1): 8802, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627480

RESUMEN

This study explores the impact of a wind storm on sediment resuspension and marine biogeochemical dynamics. Additionally, the storm took place during an expedition researching bottom trawling, enabling the direct comparison of certain natural and fisheries-related disturbances. The storm was initiated by a decline in atmospheric pressure and a 2 h period of gale force winds, which was followed by over 40 h of elevated bottom currents. Storm induced turbidity, potentially a cumulative post-fishing impact, was remarkably higher compared to what was observed in a recent trawling event. Storm-induced mixing and movement of water masses led to decreased silicate and increased phosphate concentrations in the water column, accompanied by lower salinity and higher fluorescence. The erosion depth of the seabed averaged around 0.3 cm during the peak turbidity period. Trawl-induced erosion in the area has been measured at over twice that depth, and has been linked to intermittent reductions in near-bed oxygen levels. In contrast, storm-induced turbidity coincided with increased oxygen due to wave mixing, suggesting inherent differences in how trawling and storms can oxidize reduced substances. These findings suggest that storms have a greater regional impact, whereas the local impacts of bottom trawling on biogeochemistry can be more significant.


Asunto(s)
Efectos Antropogénicos , Explotaciones Pesqueras , Caza , Agua , Oxígeno , Ecosistema
2.
Behav Ecol ; 34(3): 495-505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37192919

RESUMEN

Noisy human activities at sea are changing the acoustic environment, which has been shown to affect marine mammals and fishes. Invertebrates, such as bivalves, have so far received limited attention despite their important role in the marine ecosystem. Several studies have examined the impact of sound on anti-predator behavior using simulated predators, but studies using live predators are scarce. In the current study, we examined the separate and combined effects of boat sound playback and predator cues of shore crabs (Carcinus maenas) on the behavior of mussels (Mytilus spp.). We examined the behavior of the mussels using a valve gape monitor and scored the behavior from the crabs in one of two types of predator test conditions from video footage to control for effects from potential, sound-induced variation in crab behavior. We found that mussels closed their valve gape during boat noise and with a crab in their tank, but also that the stimulus combination did not add up to an even smaller valve gape. The sound treatment did not affect the stimulus crabs, but the behavior of the crabs did affect the valve gape of the mussels. Future research is needed to examine whether these results stand in situ and whether valve closure due to sound has fitness consequences for mussels. The effects on the well-being of individual mussels from anthropogenic noise may be relevant for population dynamics in the context of pressure from other stressors, their role as an ecosystem engineer, and in the context of aquaculture.

3.
PeerJ ; 10: e12894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282275

RESUMEN

The pearl whipray Fontitrygon margaritella (Compagno & Roberts, 1984) is a common elasmobranch in coastal western African waters. However, knowledge on their life-history and trophic ecology remains limited. Therefore, we aimed to determine the growth, maturity and diet of F. margaritella from the Bijagós Archipelago in Guinea-Bissau. Growth was modelled with: von Bertalanffy, Gompertz and logistic functions. Model selection revealed no model significantly outperformed another. The sampled age ranged from less than 1 to 7 years (1.8 ± 1.9 cm, mean ± standard deviation) and size (disc width) ranged from 12.2 to 30.6 cm (18.7 ± 5.2 cm). Size-at-maturity was estimated at 20.3 cm (95% CI [18.8-21.8 cm]) for males and 24.3 cm for females (95% CI [21.9-26.5 cm]), corresponding ages of 2.2 and 3.9 years. The diet differed significantly among young-of-the-year (YOY), juveniles and adults (p = 0.001). Diet of all life stages consisted mainly of crustaceans (27.4%, 28.5%, 33.3%) and polychaetes (12.5%, 26.7%, 20.3%), for YOY, juveniles and adults respectively. This study shows that F. margaritella is relatively fast-growing, matures early and experiences ontogenetic diet shifts. These results contribute to status assessments and conservation efforts of F. margaritella and closely related species.


Asunto(s)
Dieta , Rajidae , Masculino , Animales , Femenino , Guinea Bissau , Ecología
4.
Geophys Res Lett ; 49(20): e2022GL099479, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589267

RESUMEN

Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1-18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1-850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1-18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples.

5.
R Soc Open Sci ; 8(12): 210949, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34909214

RESUMEN

Baleen from mysticete whales is a well-preserved proteinaceous material that can be used to identify migrations and feeding habits for species whose migration pathways are unknown. Analysis of δ13C and δ15N values from bulk baleen have been used to infer migration patterns for individuals. However, this approach has fallen short of identifying migrations between regions as it is difficult to determine variations in isotopic shifts without temporal sampling of prey items. Here, we apply analysis of δ15N values of amino acids to five baleen plates belonging to three species, revealing novel insights on trophic position, metabolic state and migration between regions. Humpback and minke whales had higher reconstructed trophic levels than fin whales (3.7-3.8 versus 3-3.2, respectively) as expected due to different feeding specialization. Isotopic niche areas between baleen minima and maxima were well separated, indicating regional resource use for individuals during migration that aligned with isotopic gradients in Atlantic Ocean particulate organic matter. Phenylanine δ15N values confirmed regional separation between the niche areas for two fin whales as migrations occurred and elevated glycine and threonine δ15N values suggested physiological changes due to fasting. Simultaneous resolution of trophic level and physiological changes allow for identification of regional migrations in mysticetes.

6.
PLoS One ; 16(2): e0247968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33635907

RESUMEN

Bivalve shells are increasingly used as archives for high-resolution paleoclimate analyses. However, there is still an urgent need for quantitative temperature proxies that work without knowledge of the water chemistry-as is required for δ18O-based paleothermometry-and can better withstand diagenetic overprint. Recently, microstructural properties have been identified as a potential candidate fulfilling these requirements. So far, only few different microstructure categories (nacreous, prismatic and crossed-lamellar) of some short-lived species have been studied in detail, and in all such studies, the size and/or shape of individual biomineral units was found to increase with water temperature. Here, we explore whether the same applies to properties of the crossed-acicular microstructure in the hinge plate of Arctica islandica, the microstructurally most uniform shell portion in this species. In order to focus solely on the effect of temperature on microstructural properties, this study uses bivalves that grew their shells under controlled temperature conditions (1, 3, 6, 9, 12 and 15°C) in the laboratory. With increasing temperature, the size of the largest individual biomineral units and the relative proportion of shell occupied by the crystalline phase increased. The size of the largest pores, a specific microstructural feature of A. islandica, whose potential role in biomineralization is discussed here, increased exponentially with culturing temperature. This study employs scanning electron microscopy in combination with automated image processing software, including an innovative machine learning-based image segmentation method. The new method greatly facilitates the recognition of microstructural entities and enables a faster and more reliable microstructural analysis than previously used techniques. Results of this study establish the new microstructural temperature proxy in the crossed-acicular microstructures of A. islandica and point to an overarching control mechanism of temperature on the micrometer-scale architecture of bivalve shells across species boundaries.


Asunto(s)
Adaptación Fisiológica/fisiología , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Bivalvos/crecimiento & desarrollo , Laboratorios , Temperatura , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Microscopía Electrónica de Rastreo/métodos , Paleontología/métodos , Porosidad , Programas Informáticos , Agua/química
7.
Sci Total Environ ; 738: 139700, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32534284

RESUMEN

Radiocarbon (14C) is broadly used in oceanography to determine water ages, trace water circulation, and develop sediment- and sclerochronologies. These applications require an accurate knowledge of marine 14C levels, which have been largely perturbed by human activities. Globally during the last century the above-ground nuclear weapon testings have been the primary cause of the increased atmospheric and marine 14C. However, other anthropogenic sources may have caused important regional deviations from the bomb pulse. For the last 70 years European nuclear fuel reprocessing plants have been major contributors of 14C to air and oceans, yet, their regional impact on surrounding marine 14C has been largely overlooked. Here we use a collection of bivalve shells of known capture date and age collected from various locations, including the North Sea, the Irish Sea, Norway, and the Bay of Biscay to reconstruct the sea surface 14C over the last five decades. The measured 14C values for the period 1969-2019, reported in fraction modern, ranged from 1.1 to 1.6 in coastal waters of the Netherlands and from 1.2 to 3.2 along the coast of the UK, indicating significantly higher levels of 14C than those expected for the marine bomb pulse (0.950-1.150). The 14C peaks revealed by the shells coincide with the increase of liquid 14C releases reported from the reprocessing plants of La Hague into the English Channel, and from Sellafield into the Irish Sea. Conversely, the shells from Norway and Spain showed 14C values close to the range of the global marine bomb pulse. The observed large spatial and temporal differences in sea surface 14C show that 14C dating and tracing studies could become problematic in the English Channel, Irish Sea and North Sea for the time period covering the discharge of liquid 14C from the reprocessing plants.

8.
Sci Total Environ ; 717: 137094, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062259

RESUMEN

Marine biogenic materials such as corals, shells, or seaweed have long been recognized as recorders of environmental conditions. Here, the bivalve Cerastoderma edule is used for the first time as a recorder of past seawater contamination with anthropogenic uranium, specifically 236U. Several studies have employed the authorized radioactive releases, including 236U, from nuclear reprocessing plants in La Hague, France, into the English Channel, and Sellafield, England, into the Irish Sea, to trace Atlantic waters and to understand recent climate induced circulation changes in the Arctic Ocean. Anthropogenic 236U has emerged over recent years as a new transient tracer to track these changes, but its application has been challenged owing to paucity of fundamental data on the input (timing and amount) of 236U from Sellafield. Here, we present 236U/238U data from bivalve shells collected close to La Hague and Sellafield from two unique shell collections that allow the reconstruction of the historical 236U contamination of seawater since the 1960s, mostly with bi-annual resolution. The novel archive is first validated by comparison with well-documented 236U discharges from La Hague. Then, shells from the Irish Sea are used to reconstruct the regional 236U contamination. Apart from defining new, observationally based 236U input functions that will allow more precise tracer studies in the Arctic Ocean, we find an unexpected peak of 236U releases to the Irish Sea in the 1970s. Using this peak, we provide evidence for a small, but significant recirculation of Irish Sea water into the English Channel. Tracing the 1970s peak should allow extending 236U tracer studies into the South Atlantic Ocean.


Asunto(s)
Plantas de Energía Nuclear , Agua de Mar , Uranio , Contaminantes Radiactivos del Agua
9.
Environ Sci Technol ; 53(13): 7494-7503, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31149818

RESUMEN

Oxygen depletion in coastal waters may lead to release of toxic sulfide from sediments. Cable bacteria can limit sulfide release by promoting iron oxide formation in sediments. Currently, it is unknown how widespread this phenomenon is. Here, we assess the abundance, activity, and biogeochemical impact of cable bacteria at 12 Baltic Sea sites. Cable bacteria were mostly absent in sediments overlain by anoxic and sulfidic bottom waters, emphasizing their dependence on oxygen or nitrate as electron acceptors. At sites that were temporarily reoxygenated, cable bacterial densities were low. At seasonally hypoxic sites, cable bacterial densities correlated linearly with the supply of sulfide. The highest densities were observed at Gulf of Finland sites with high rates of sulfate reduction. Microelectrode profiles of sulfide, oxygen, and pH indicated low or no in situ cable bacteria activity at all sites. Reactivation occurred within 5 days upon incubation of an intact sediment core from the Gulf of Finland with aerated overlying water. We found no relationship between cable bacterial densities and macrofaunal abundances, salinity, or sediment organic carbon. Our geochemical data suggest that cable bacteria promote conversion of iron monosulfides to iron oxides in the Gulf of Finland in spring, possibly explaining why bottom waters in this highly eutrophic region rarely contain sulfide in summer.


Asunto(s)
Bacterias , Sedimentos Geológicos , Países Bálticos , Finlandia , Sulfuros
10.
Biol Lett ; 15(1): 20180665, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958223

RESUMEN

Over the past century, the dendrochronology technique of crossdating has been widely used to generate a global network of tree-ring chronologies that serves as a leading indicator of environmental variability and change. Only recently, however, has this same approach been applied to growth increments in calcified structures of bivalves, fish and corals in the world's oceans. As in trees, these crossdated marine chronologies are well replicated, annually resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of ocean palaeoclimatic and palaeoecological processes. Moreover, they span an extensive geographical range, multiple trophic levels, habitats and functional types, and can be readily integrated with observational physical or biological records. Increment width is the most commonly measured parameter and reflects growth or productivity, though isotopic and elemental composition capture complementary aspects of environmental variability. As such, crossdated marine chronologies constitute powerful observational templates to establish climate-biology relationships, test hypotheses of ecosystem functioning, conduct multi-proxy reconstructions, provide constraints for numerical climate models, and evaluate the precise timing and nature of ocean-atmosphere interactions. These 'present-past-future' perspectives provide new insights into the mechanisms and feedbacks between the atmosphere and marine systems while providing indicators relevant to ecosystem-based approaches of fisheries management.


Asunto(s)
Clima , Ecosistema , Animales , Cambio Climático , Océanos y Mares , Árboles
11.
Sci Total Environ ; 645: 913-923, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30032087

RESUMEN

Long-term and high-resolution environmental proxy data are crucial to contextualize current climate change. The extremely long-lived bivalve, Arctica islandica, is one of the most widely used paleoclimate archives of the northern Atlantic because of its fine temporal resolution. However, the interpretation of environmental histories from microstructures and elemental impurities of A. islandica shells is still a challenge. Vital effects (metabolic rate, ontogenetic age, and growth rate) can modify the way in which physiochemical changes of the ambient environment are recorded by the shells. To quantify the degree to which microstructural properties and element incorporation into A. islandica shells is vitally or/and environmentally affected, A. islandica specimens were reared for three months under different water temperatures (3, 8 and 13 °C) and food concentrations (low, medium and high). Concentrations of Mg, Sr, Na, and Ba were measured in the newly formed shell portions by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The microstructures of the shells were analyzed by Scanning Electron Microscopy (SEM). Shell growth and condition index of each specimen were calculated at the end of the experimental period. Findings indicate that no significant variation in the morphometric characteristics of the microstructures were formed at different water temperatures or different food concentrations. Shell carbonate that formed at lowest food concentration usually incorporated the highest amounts of Mg, Sr and Ba relative to Ca+2 (except for Na) and was consistent with the slowest shell growth and lowest condition index at the end of the experiment. These results seem to indicate that, under food limitation, the ability of A. islandica to discriminate element impurities during shell formation decreases. Moreover, all trace element-to­calcium ratios were significantly affected by shell growth rate. Therefore, physiological processes seem to dominate the control on element incorporation into A. islandica shells.

12.
Mar Environ Res ; 133: 67-77, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29233602

RESUMEN

The interest in Arctica islandica growth biology has recently increased due to the widespread use of its shell as a bioarchive. Although temperature and food availability are considered key factors in its growth, their combined influence has not been studied so far under laboratory conditions. We tested the interactive effect of temperature and food availability on the shell and tissue growth of A. islandica juveniles (9-15 mm in height) in a multi-factorial experiment with four food levels (no food, low, medium, and high) and three different temperatures (3, 8, 13 °C). Shell and tissue growth were observed in all treatments, with significant differences occurring only among food levels (2-way ANOVA; P-value < 0.05). Siphon activity (% open siphons), however, was affected by temperature, food, and the interaction between them (2-way ANOVA; P-value < 0.05). Siphon observations, as indication of feeding activities, played a key role to better understand the growth variation between individuals.


Asunto(s)
Bivalvos/crecimiento & desarrollo , Alimentos , Temperatura , Animales
13.
Mar Biol ; 164(5): 116, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546647

RESUMEN

Arctica islandica is the longest-living non-colonial animal known at present. It inhabits coastal waters in the North Atlantic and its annual shell increments are widely used for paleoclimatic reconstructions. There is no consensus, however, about the intra-annual timing of its feeding activity and growth. This research aims to identify the main environmental drivers of A. islandica valve gape to clarify the ambiguity surrounding its seasonal activity. A lander was deployed from February 2014 to September 2015 on the sea bottom at Ingøya, Norway (71°03'N, 24°05'E) containing living A. islandica specimens (70.17 ± 0.95 mm SE) in individual containers. Each individual was attached to an electrode unit that measured the distance between their valves (valve gape) every minute. Individuals were followed for various lengths of time, and in some cases replaced by smaller individuals (54.34 ± 0.63 mm SE). The lander was also equipped with instruments to simultaneously monitor temperature, salinity, [Chl-a], turbidity, and light. There was a significant difference in the average monthly valve gape (P value < 0.01), with monthly means of 19-84% of the total valve gape magnitude. The experimental population was largely inactive October-January, with an average daily gape <23%. During this period the clams opened at high amplitude once or twice a month for 1-3 days. Seasonal cycles of sea water temperature and [Chl-a] were temporally offset from each other, with temperature lagging [Chl-a] by about 2 months. Multiple regression analyses showed that bivalve gaping activity was most closely correlated with variable [Chl-a], and to a much smaller degree with photoperiod and temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA