RESUMEN
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
RESUMEN
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
RESUMEN
Recently, silver nanoparticles (NPs) have attracted significant attention for being highly desirable nanomaterials in scientific studies as a result of their extraordinary characteristics. They are widely known as effective antibacterial agents that are capable of targeting a wide range of pathogens. Their distinct optical characteristics, such as their localized surface plasmon resonance, enlarge their utilization, particularly in the fields of biosensing and imaging. Also, the capacity to control their surface charge and modify them using biocompatible substances offers improved durability and specific interactions with biological systems. Due to their exceptional stability and minimal chemical reactivity, silver NPs are highly suitable for a diverse array of biological applications. These NPs are produced through chemical, biological, and physical processes, each of which has distinct advantages and disadvantages. Chemical and physical techniques often encounter issues with complicated purification, reactive substances, and excessive energy usage. However, eco-friendly biological approaches exist, even though they require longer processing times. A key factor affecting the stability, size distribution, and purity of the NPs is the synthesis process selected. This review focuses on how essential it is to choose the appropriate synthesis method in order to optimize the characteristics and use of silver NPs.
RESUMEN
Lactoferrin is a multifunctional glycoprotein naturally found in mammalian secretions, predominantly in colostrum and milk. As a key component of dairy foods, lactoferrin enhances viral protection and boosts human health, owing to its fundamental properties including antiviral, anti-inflammatory, and immune-modulatory effects. Importantly, the antiviral effect of lactoferrin has been shown against a range of viruses causing serious infections and threatening human health. One of the viruses that lactoferrin exerts significant antiviral effects on is the human papillomavirus (HPV), which is the most prevalent transmitted infection affecting a myriad of people around the world. Lactoferrin has a high potential to inhibit HPV via different mechanisms, including direct binding to viral envelope proteins or their cell receptors, thereby hindering viral entry and immune stimulation by triggering the release of some immune-related molecules through the body, such as lymphocytes. Along with HPV, lactoferrin also can inhibit a range of viruses including coronaviruses and hepatitis viruses in the same manner. Here, we overview the current knowledge of lactoferrin and its effects on HPV and other viral infections.
Asunto(s)
Antivirales , Lactoferrina , Infecciones por Papillomavirus , Lactoferrina/uso terapéutico , Lactoferrina/farmacología , Humanos , Infecciones por Papillomavirus/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Papillomaviridae/efectos de los fármacos , Animales , Internalización del Virus/efectos de los fármacos , Virus del Papiloma HumanoRESUMEN
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Asunto(s)
Nanopartículas , Nanopartículas/química , Humanos , Animales , Polímeros/químicaRESUMEN
Malnutrition is a significant concern affecting the elderly, necessitating a complex assessment. This study aims to deepen the understanding of factors associated with the assessment of malnutrition in the elderly by comparing single- and multi-parameter approaches. In this cross-sectional study, 154 individuals underwent a comprehensive geriatric assessment (CGA). Malnutrition risk was determined using the mini nutritional assessment (MNA). Additional factors assessed included sarcopenia, polypharmacy, depression, appetite, handgrip strength, and gait speed. Phase angle (PA) and body composition were measured using bioelectrical impedance analysis (BIA). The MNA identified a malnutrition risk in 36.8% of individuals. The geriatric depression scale (GDS) and PA demonstrated moderate effectiveness in assessing malnutrition risk, with AUC values of 0.69 (95% CI: 0.60-0.78) and 0.62 (95% CI: 0.54-0.72), respectively. A logistic regression model incorporating handgrip strength, skeletal muscle mass, sarcopenia, osteoporosis, depression, specific antidepressant use, mobility, appetite, and smoking achieved superior performance in predicting malnutrition risk, with an AUC of 0.84 (95% CI: 0.77-0.91). In conclusion, this study demonstrates that integrating multiple parameters into a composite model provides a more accurate and comprehensive assessment of malnutrition risk in elderly adults.
Asunto(s)
Evaluación Geriátrica , Fuerza de la Mano , Desnutrición , Evaluación Nutricional , Humanos , Anciano , Desnutrición/epidemiología , Desnutrición/diagnóstico , Femenino , Masculino , Evaluación Geriátrica/métodos , Estudios Transversales , Anciano de 80 o más Años , Factores de Riesgo , Composición Corporal , Depresión/epidemiología , Medición de Riesgo , Sarcopenia/epidemiología , Sarcopenia/diagnóstico , Estado Nutricional , Impedancia Eléctrica , Apetito , Modelos LogísticosRESUMEN
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Asunto(s)
Disponibilidad Biológica , Frutas , Polifenoles , Polifenoles/farmacología , Polifenoles/farmacocinética , Humanos , Frutas/química , Verduras/química , Metabolismo Secundario , Nanopartículas , Suplementos DietéticosRESUMEN
From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.
Asunto(s)
Antioxidantes , Fermentación , Antioxidantes/metabolismo , Antioxidantes/química , Productos LácteosRESUMEN
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota's capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions.
Asunto(s)
Dieta , Microbioma Gastrointestinal , Calidad del Sueño , Microbioma Gastrointestinal/fisiología , Humanos , Fibras de la Dieta/administración & dosificación , Melatonina , Conducta Alimentaria/fisiología , Polifenoles , Sueño/fisiología , Ácidos Grasos Volátiles/metabolismo , Serotonina/metabolismoRESUMEN
Background: Chronic heart failure (CHF) is a complex clinical syndrome associated with muscle wasting, which can progress to cardiac cachexia. Myostatin, a negative regulator of muscle growth, has been implicated in the pathophysiology of muscle wasting in CHF patients and suggested as a potential biomarker. The objective of this study was to investigate serum myostatin concentration in patients with CHF with preserved and reduced ejection fraction. Methods: The authors conducted a single-centre study comparing serum myostatin levels, functional and echocardiographic parameters, muscle mass, strength and function in patients with CHF to a control group without CHF. The study group was further divided into sub-groups with preserved and reduced or mildly reduced ejection fraction. Results: Results showed no significant differences in myostatin concentration between CHF patients and controls, and no correlation with sarcopenia or dynapenia. However, a higher myostatin concentration was found in patients with impaired systolic function (Me = 1675 pg/mL vs. Me-884.5 pg/mL; p = 0.007). A positive correlation between myostatin concentration and muscle mass (r = 0.27; p = 0.04), and functional parameters such as Norton (r = 0.35; p < 0.01), I-ADL (r = 0.28; p = 0.02) and Barthel scale (r = 0.27; p = 0.03) scores, was also observed. Conclusions: Myostatin appears to play a role in muscle wasting and its progression to cardiac cachexia in patients with impaired ejection fraction. Further research is needed to confirm these findings and explore myostatin's potential as a biomarker for muscle loss and a target for pharmacotherapeutic agents in this population of patients.
RESUMEN
BACKGROUND: There has been an increasing global prevalence of depression and other psychiatric diseases in recent years. Perceived stress has been proven to be associated with psychiatric and somatic symptoms. Some animal and human studies have suggested that consuming foods abundant in lignans and phytosterols may be associated with lower levels of stress, depression, and anxiety. Still, the evidence is not yet strong enough to draw firm conclusions. Thus, we investigated the association between dietary intake of these phytochemicals and the level of stress experienced by adult individuals. METHODS: Diet was assessed using self-reported 7-day dietary records. The intakes of lignans and phytosterols were estimated using databases with their content in various food products. The Perceived Stress Scale (PSS) was implemented to measure the level of perceived stress. A logistic regression analysis was used to test for associations. RESULTS: The odds of elevated PSS were negatively associated with dietary intake of total phytosterols, stigmasterol, and ß-sitosterol, with evidence of a decreasing trend across tertiles of phytochemicals. The analysis for doubling the intake reinforced the aforementioned relationships and found protective effects against PSS for total lignans, pinoresinol, and campesterol. CONCLUSIONS: Habitual inclusion of lignans and phytosterols in the diet may play a role in psychological health. To address the global outbreak of depression and other mental health issues triggered by stress, it is important to take a holistic approach. There is a need to develop effective strategies for prevention and treatment, among which certain dietary interventions such as consumption of products abundant in lignans and phytosterols may play a substantial role.
Asunto(s)
COVID-19 , Lignanos , Fitosteroles , Pruebas Psicológicas , Autoinforme , Humanos , Adulto Joven , Polonia , Pandemias , COVID-19/epidemiología , Fitosteroles/análisis , Dieta , PercepciónRESUMEN
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Asunto(s)
Relojes Circadianos , Microbiota , Humanos , Oxidación-Reducción , Ritmo Circadiano/fisiología , Relojes Circadianos/genética , Procesamiento Proteico-PostraduccionalRESUMEN
Cardiometabolic disorders are major causes of morbidity and mortality worldwide. A growing body of research indicates that the gut microbiota, whether it interacts favorably or not, plays an important role in host metabolism. Elucidating metabolic pathways may be crucial in preventing and treating cardiometabolic diseases, and omics methods are key to studying the interaction between the fecal microbiota and host metabolism. This review summarizes available studies that combine metabolomic and metagenomic approaches to describe the effects of drugs, diet, nutrients, and specific foods on cardiometabolic health and to identify potential targets for future research.
RESUMEN
Objectives: Devastating consequences of COVID-19 disease enhanced the role of promoting prevention-focused practices. Among targeted efforts, diet is regarded as one of the potential factors which can affect immune function and optimal nutrition is postulated as the method of augmentation of people's viral resistance. As epidemiological evidence is scarce, the present study aimed to explore the association between dietary intake of total polyphenols, lignans and plant sterols and the abundance of immunomodulatory gut microbiota such as Enterococcus spp. and Escherichia coli and the risk of developing COVID-19 disease. Methods: Demographic data, dietary habits, physical activity as well as the composition of body and gut microbiota were analyzed in a sample of 95 young healthy individuals. Dietary polyphenol, lignan and plant sterol intakes have been retrieved based on the amount of food consumed by the participants, the phytochemical content was assessed in laboratory analysis and using available databases. Results: For all investigated polyphenols and phytosterols, except campesterol, every unit increase in the tertile of intake category was associated with a decrease in the odds of contracting COVID-19. The risk reduction ranged from several dozen percent to 70 %, depending on the individual plant-based chemical, and after controlling for basic covariates it was statistically significant for secoisolariciresinol (OR = 0.28, 95% CI: 0.11-0.61), total phytosterols (OR = 0.47, 95% CI: 0.22-0.95) and for stigmasterols (OR = 0.34, 95% CI: 0.14-0.72). We found an inverse association between increased ß-sitosterol intake and phytosterols in total and the occurrence of Escherichia coli in stool samples outside reference values, with 72% (OR = 0.28, 95% CI: 0.08-0.86) and 66% (OR = 0.34, 95% CI: 0.10-1.08) reduced odds of abnormal level of bacteria for the highest compared with the lowest tertile of phytochemical consumption. Additionally, there was a trend of more frequent presence of Enterococcus spp. at relevant level in people with a higher intake of lariciresinol. Conclusion: The beneficial effects of polyphenols and phytosterols should be emphasized and these plant-based compounds should be regarded in the context of their utility as antiviral agents preventing influenza-type infections.
RESUMEN
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
RESUMEN
Chronic diseases, most notably diabetes, cancer, cardiovascular diseases, neurodegenerative diseases, thyroid diseases, and allergic diseases are major causes of death, disability, and a lower quality of life in various populations [...].
RESUMEN
This study aimed to assess the relationship between the dietary total antioxidant capacity (DTAC) and the occurrence of cardiovascular diseases (CVDs), as well as healthy diet quality, in a representative sample (n = 5690) of the whole Polish adult population (WOBASZ II study). Daily food consumption was estimated by the single 24 h dietary recall method. Antioxidant vitamins (C, E, and ß-carotene) and minerals (Zn, Fe, Mn, and Cu) from the diet and supplements were calculated using 5D Diet software, and dietary total polyphenol intake (DTPI) was determined using the Phenol-Explorer database and our database. Total diet quality was measured by the Healthy Diet Indicator (HDI) based on World Health Organization (WHO) recommendations for the prevention of CVD. DTAC was calculated using the data on food consumption and the antioxidant potential of foods measured by the FRAP (ferric ion reducing antioxidant potential) method. It was shown that higher DTAC was associated with a higher intake of polyphenols, antioxidant vitamins, and minerals. Moreover, a higher quartile of DTAC was associated with a reduced odds ratio for cardiovascular diseases in a Polish population, as well as with a higher HDI. Therefore, dietary recommendations for the prevention and therapy of CVDs should take into account a high DTAC. DTAC, measured by the FRAP method, can be considered an indicator of healthy diet quality.
Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Adulto , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Estudios Transversales , Dieta , Dieta Saludable , Humanos , Minerales , Polonia/epidemiología , Polifenoles/análisis , VitaminasRESUMEN
Dietary cholesterol has been suggested to increase the risk of cardiovascular disease (CVD). Phytosterols, present in food or phytosterol-enriched products, can reduce cholesterol available for absorption. The present study aimed to investigate the association between habitual intake of total and individual plant sterols (ß-sitosterol, campesterol, and stigmasterol) or a diet combined with phytosterol-enriched products and CVD in a cross-section of Polish adults, participants of the Multicenter National Health Survey II (WOBASZ II). Among men (n = 2554), median intakes of plant sterols in terciles ranged between 183−456 mg/d and among women (n = 3136), 146−350 mg/d in terciles. The intake of phytosterols, when consumed with food containing phytosterols, including margarine, ranged between 184−459 mg/d for men and 147−352 mg/d for women. Among both men and women, beta-sitosterol intake predominated. Plant sterol intake was lower among both men and women with CVD (p = 0.016) compared to those without CVD. Diet quality, as measured by the Healthy Diet Index (HDI), was significantly higher in the third tercile of plant sterol intake for both men and women and the entire study group (p < 0.0001). This study suggests that habitual dietary intake of plant sterols may be associated with a lower chance of developing CVD, particularly in men.
Asunto(s)
Enfermedades Cardiovasculares , Fitosteroles , Adulto , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Estudios Transversales , Dieta , Femenino , Humanos , Masculino , Margarina , PoloniaRESUMEN
Sleep is a cyclically occurring, transient, and functional state that is controlled primarily by neurobiological processes. Sleep disorders and insomnia are increasingly being diagnosed at all ages. These are risk factors for depression, mental disorders, coronary heart disease, metabolic syndrome, and/or high blood pressure. A number of factors can negatively affect sleep quality, including the use of stimulants, stress, anxiety, and the use of electronic devices before sleep. A growing body of evidence suggests that nutrition, physical activity, and sleep hygiene can significantly affect the quality of sleep. The aim of this review was to discuss the factors that can affect sleep quality, such as nutrition, stimulants, and physical activity.